Package 'utiml'

Title: Utilities for Multi-Label Learning
Description: Multi-label learning strategies and others procedures to support multi- label classification in R. The package provides a set of multi-label procedures such as sampling methods, transformation strategies, threshold functions, pre-processing techniques and evaluation metrics. A complete overview of the matter can be seen in Zhang, M. and Zhou, Z. (2014) <doi:10.1109/TKDE.2013.39> and Gibaja, E. and Ventura, S. (2015) A Tutorial on Multi-label Learning.
Authors: Adriano Rivolli [aut, cre]
Maintainer: Adriano Rivolli <[email protected]>
License: GPL-3
Version: 0.1.7
Built: 2025-01-15 04:55:52 UTC
Source: https://github.com/rivolli/utiml

Help Index


Filter a Multi-Label Result

Description

If column filter is performed, then the result will be a matrix. Otherwise, the result will be a mlresult.

Usage

## S3 method for class 'mlresult'
mlresult[rowFilter = T, colFilter, ...]

Arguments

mlresult

A mlresult object

rowFilter

A list of rows to filter

colFilter

A list of columns to filter

...

Extra parameters to be used as the filter

Value

mlresult or matrix. If column filter is performed, then the result will be a matrix. Otherwise, the result will be a mlresult.


Join two multi-label confusion matrix

Description

Join two multi-label confusion matrix

Usage

## S3 method for class 'mlconfmat'
mlcm1 + mlcm2

Arguments

mlcm1

A mlconfmat

mlcm2

Other mlconfmat

Value

mlconfmat


Convert a mlresult to a bipartition matrix

Description

Convert a mlresult to a bipartition matrix

Usage

as.bipartition(mlresult)

Arguments

mlresult

The mlresult object

Value

matrix with bipartition values


Convert a multi-label Confusion Matrix to matrix

Description

Convert a multi-label Confusion Matrix to matrix

Usage

## S3 method for class 'mlconfmat'
as.matrix(x, ...)

Arguments

x

The mlconfmat

...

passed to as.matrix

Value

A confusion matrix with TP, TN, FP and FN columns


Convert a mlresult to matrix

Description

Convert a mlresult to matrix

Usage

## S3 method for class 'mlresult'
as.matrix(x, ...)

Arguments

x

The mlresult object

...

ignored

Value

matrix


Convert a matrix prediction in a multi label prediction

Description

Convert a matrix prediction in a multi label prediction

Usage

as.mlresult(predictions, probability = TRUE, ...)

## Default S3 method:
as.mlresult(predictions, probability = TRUE, ..., threshold = 0.5)

## S3 method for class 'mlresult'
as.mlresult(predictions, probability = TRUE, ...)

Arguments

predictions

a Matrix or data.frame contained the scores/probabilities values. The columns are the labels and the rows are the examples.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: TRUE)

...

ignored

threshold

A single value between 0 and 1 or a list with threshold values contained one value per label (Default: 0.5). Only used when the predictions are not a mlresult.

Value

An object of type mlresult

Methods (by class)

  • default: Default mlresult transform method

  • mlresult: change the mlresult type

Examples

predictions <- matrix(runif(100), ncol = 10)
colnames(predictions) <- paste('label', 1:10, sep='')

# Create a mlresult from a matrix
mlresult <- as.mlresult(predictions)
mlresult <- as.mlresult(predictions, probability = FALSE)
mlresult <- as.mlresult(predictions, probability = FALSE, threshold = 0.6)

# Change the current type of a mlresult
mlresult <- as.mlresult(mlresult, probability = TRUE)

Convert a mlresult to a probability matrix

Description

Convert a mlresult to a probability matrix

Usage

as.probability(mlresult)

Arguments

mlresult

The mlresult object

Value

matrix with probabilities values


Convert a mlresult to a ranking matrix

Description

Convert a mlresult to a ranking matrix

Usage

as.ranking(mlresult, ties.method = "min", ...)

Arguments

mlresult

The mlresult object

ties.method

A character string specifying how ties are treated (Default: "min"). see rank to more details.

...

Others parameters passed to the rank method.

Value

matrix with ranking values


Baseline reference for multilabel classification

Description

Create a baseline model for multilabel classification.

Usage

baseline(
  mdata,
  metric = c("general", "F1", "hamming-loss", "subset-accuracy", "ranking-loss"),
  ...
)

Arguments

mdata

A mldr dataset used to train the binary models.

metric

Define the strategy used to predict the labels.

The possible values are: 'general', 'F1', 'hamming-loss' or 'subset-accuracy'. See the description for more details. (Default: 'general').

...

not used

Details

Baseline is a naive multi-label classifier that maximize/minimize a specific measure without induces a learning model. It uses the general information about the labels in training dataset to estimate the labels in a test dataset.

The follow strategies are available:

general

Predict the k most frequent labels, where k is the integer most close of label cardinality.

F1

Predict the most frequent labels that obtain the best F1 measure in training data. In the original paper, the authors use the less frequent labels.

hamming-loss

Predict the labels that are associated with more than 50% of instances.

subset-accuracy

Predict the most common labelset.

ranking-loss

Predict a ranking based on the most frequent labels.

Value

An object of class BASELINEmodel containing the set of fitted models, including:

labels

A vector with the label names.

predict

A list with the labels that will be predicted.

References

Metz, J., Abreu, L. F. de, Cherman, E. A., & Monard, M. C. (2012). On the Estimation of Predictive Evaluation Measure Baselines for Multi-label Learning. In 13th Ibero-American Conference on AI (pp. 189-198). Cartagena de Indias, Colombia.

Examples

model <- baseline(toyml)
pred <- predict(model, toyml)

## Change the metric
model <- baseline(toyml, "F1")
model <- baseline(toyml, "subset-accuracy")

Binary Relevance for multi-label Classification

Description

Create a Binary Relevance model for multilabel classification.

Usage

br(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm (Default: options("utiml.base.algorithm", "SVM"))

...

Others arguments passed to the base algorithm for all subproblems

cores

The number of cores to parallelize the training. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

Binary Relevance is a simple and effective transformation method to predict multi-label data. This is based on the one-versus-all approach to build a specific model for each label.

Value

An object of class BRmodel containing the set of fitted models, including:

labels

A vector with the label names.

models

A list of the generated models, named by the label names.

References

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771.

See Also

Other Transformation methods: brplus(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- br(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use SVM as base algorithm
model <- br(toyml, "SVM")
pred <- predict(model, toyml)

# Change the base algorithm and use 2 CORES
model <- br(toyml[1:50], 'RF', cores = 2, seed = 123)

# Set a parameters for all subproblems
model <- br(toyml, 'KNN', k=5)

BR+ or BRplus for multi-label Classification

Description

Create a BR+ classifier to predict multi-label data. This is a simple approach that enables the binary classifiers to discover existing label dependency by themselves. The main idea of BR+ is to increment the feature space of the binary classifiers to let them discover existing label dependency by themselves.

Usage

brplus(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

This implementation has different strategy to predict the final set of labels for unlabeled examples, as proposed in original paper.

Value

An object of class BRPmodel containing the set of fitted models, including:

freq

The label frequencies to use with the 'Stat' strategy

initial

The BR model to predict the values for the labels to initial step

models

A list of final models named by the label names.

References

Cherman, E. A., Metz, J., & Monard, M. C. (2012). Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Systems with Applications, 39(2), 1647-1655.

See Also

Other Transformation methods: br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Stacking methods: mbr()

Examples

# Use SVM as base algorithm
model <- brplus(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use Random Forest as base algorithm and 2 cores
model <- brplus(toyml, 'RF', cores = 2, seed = 123)

Classifier Chains for multi-label Classification

Description

Create a Classifier Chains model for multilabel classification.

Usage

cc(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  chain = NA,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

chain

A vector with the label names to define the chain order. If empty the chain is the default label sequence of the dataset. (Default: NA)

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

Classifier Chains is a Binary Relevance transformation method based to predict multi-label data. This is based on the one-versus-all approach to build a specific model for each label. It is different from BR method due the strategy of extended the attribute space with the 0/1 label relevances of all previous classifiers, forming a classifier chain.

Value

An object of class CCmodel containing the set of fitted models, including:

chain

A vector with the chain order.

labels

A vector with the label names in expected order.

models

A list of models named by the label names.

References

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier Chains for Multi-label Classification. Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, 5782, 254-269.

See Also

Other Transformation methods: brplus(), br(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- cc(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use a specific chain with C5.0 classifier
mychain <- sample(rownames(toyml$labels))
model <- cc(toyml, 'C5.0', mychain)

# Set a specific parameter
model <- cc(toyml, 'KNN', k=5)

#Run with multiple-cores
model <- cc(toyml, 'RF', cores = 2, seed = 123)

Calibrated Label Ranking (CLR) for multi-label Classification

Description

Create a CLR model for multilabel classification.

Usage

clr(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

...

Others arguments passed to the base algorithm for all subproblems

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

CLR is an extension of label ranking that incorporates the calibrated scenario. The introduction of an artificial calibration label, separates the relevant from the irrelevant labels.

Value

An object of class RPCmodel containing the set of fitted models, including:

labels

A vector with the label names.

rpcmodel

A RPC model.

brmodel

A BR model used to calibrated the labels.

References

Brinker, K., Furnkranz, J., & Hullermeier, E. (2006). A unified model for multilabel classification and ranking. In Proceeding of the ECAI 2006: 17th European Conference on Artificial Intelligence. p. 489-493. Furnkranz, J., Hullermeier, E., Loza Mencia, E., & Brinker, K. (2008). Multilabel classification via calibrated label ranking. Machine Learning, 73(2), 133-153.

See Also

Other Transformation methods: brplus(), br(), cc(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Pairwise methods: rpc()

Examples

model <- clr(toyml, "RANDOM")
pred <- predict(model, toyml)

Compute the multi-label ensemble predictions based on some vote schema

Description

Compute the multi-label ensemble predictions based on some vote schema

Usage

compute_multilabel_predictions(
  predictions,
  vote.schema = "maj",
  probability = getOption("utiml.use.probs", TRUE)
)

Arguments

predictions

A list of multi-label predictions (mlresult).

vote.schema

Define the way that ensemble must compute the predictions. The default valid options are:

'avg'

Compute the mean of probabilities and the bipartitions

'maj'

Compute the majority of votes

'max'

Compute the higher probability for each instance/label

'min'

Compute the lower probability for each instance/label

. (Default: 'maj')

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1.

Value

A mlresult with computed predictions.

Note

You can create your own vote schema, just create a method that receive two matrix (bipartitions and probabilities) and return a list with the final bipartitions and probabilities.

Remember that this method will compute the ensemble votes for each label. Thus the bipartition and probability matrix passed as argument for this method is related with the bipartitions and probabilities for a single label.

Examples

model <- br(toyml, "KNN")
predictions <- list(
 predict(model, toyml[1:10], k=1),
 predict(model, toyml[1:10], k=3),
 predict(model, toyml[1:10], k=5)
)

result <- compute_multilabel_predictions(predictions, "maj")

## Random choice
random_choice <- function (bipartition, probability) {
 cols <- sample(seq(ncol(bipartition)), nrow(bipartition), replace = TRUE)
 list(
   bipartition = bipartition[cbind(seq(nrow(bipartition)), cols)],
   probability = probability[cbind(seq(nrow(probability)), cols)]
 )
}
result <- compute_multilabel_predictions(predictions, "random_choice")

Create a holdout partition based on the specified algorithm

Description

This method creates multi-label dataset for train, test, validation or other proposes the partition method defined in method. The number of partitions is defined in partitions parameter. Each instance is used in only one partition of division.

Usage

create_holdout_partition(
  mdata,
  partitions = c(train = 0.7, test = 0.3),
  method = c("random", "iterative", "stratified")
)

Arguments

mdata

A mldr dataset.

partitions

A list of percentages or a single value. The sum of all values does not be greater than 1. If a single value is informed then the complement of them is applied to generated the second partition. If two or more values are informed and the sum of them is lower than 1 the partitions will be generated with the informed proportion. If partitions have names, they are used to name the return. (Default: c(train=0.7, test=0.3)).

method

The method to split the data. The default methods are:

random

Split randomly the folds.

iterative

Split the folds considering the labels proportions individually. Some specific label can not occurs in all folds.

stratified

Split the folds considering the labelset proportions.

You can also create your own partition method. See the note and example sections to more details. (Default: "random")

Value

A list with at least two datasets sampled as specified in partitions parameter.

Note

To create your own split method, you need to build a function that receive a mldr object and a list with the proportions of examples in each fold and return an other list with the index of the elements for each fold.

References

Sechidis, K., Tsoumakas, G., & Vlahavas, I. (2011). On the stratification of multi-label data. In Proceedings of the Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD (pp. 145-158).

See Also

Other sampling: create_kfold_partition(), create_random_subset(), create_subset()

Examples

dataset <- create_holdout_partition(toyml)
names(dataset)
## [1] "train" "test"
#dataset$train
#dataset$test

dataset <- create_holdout_partition(toyml, c(a=0.1, b=0.2, c=0.3, d=0.4))
#' names(dataset)
#' ## [1] "a" "b" "c" "d"

sequencial_split <- function (mdata, r) {
 S <- list()

 amount <- trunc(r * mdata$measures$num.instances)
 indexes <- c(0, cumsum(amount))
 indexes[length(r)+1] <- mdata$measures$num.instances

 S <- lapply(seq(length(r)), function (i) {
   seq(indexes[i]+1, indexes[i+1])
 })

 S
}
dataset <- create_holdout_partition(toyml, method="sequencial_split")

Create the k-folds partition based on the specified algorithm

Description

This method create the kFoldPartition object, from it is possible create the dataset partitions to train, test and optionally to validation.

Usage

create_kfold_partition(
  mdata,
  k = 10,
  method = c("random", "iterative", "stratified")
)

Arguments

mdata

A mldr dataset.

k

The number of desirable folds. (Default: 10)

method

The method to split the data. The default methods are:

random

Split randomly the folds.

iterative

Split the folds considering the labels proportions individually. Some specific label can not occurs in all folds.

stratified

Split the folds considering the labelset proportions.

You can also create your own partition method. See the note and example sections to more details. (Default: "random")

Value

An object of type kFoldPartition.

Note

To create your own split method, you need to build a function that receive a mldr object and a list with the proportions of examples in each fold and return an other list with the index of the elements for each fold.

References

Sechidis, K., Tsoumakas, G., & Vlahavas, I. (2011). On the stratification of multi-label data. In Proceedings of the Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD (pp. 145-158).

See Also

How to create the datasets from folds

Other sampling: create_holdout_partition(), create_random_subset(), create_subset()

Examples

k10 <- create_kfold_partition(toyml, 10)
k5 <- create_kfold_partition(toyml, 5, "stratified")

sequencial_split <- function (mdata, r) {
 S <- list()

 amount <- trunc(r * mdata$measures$num.instances)
 indexes <- c(0, cumsum(amount))
 indexes[length(r)+1] <- mdata$measures$num.instances

 S <- lapply(seq(length(r)), function (i) {
   seq(indexes[i]+1, indexes[i+1])
 })

 S
}
k3 <- create_kfold_partition(toyml, 3, "sequencial_split")

Create a random subset of a dataset

Description

Create a random subset of a dataset

Usage

create_random_subset(
  mdata,
  instances,
  attributes = mdata$measures$num.inputs,
  replacement = FALSE
)

Arguments

mdata

A mldr dataset

instances

The number of expected instances

attributes

The number of expected attributes. (Default: all attributes)

replacement

A boolean value to define sample with replacement or not. (Default: FALSE)

Value

A new mldr subset

See Also

Other sampling: create_holdout_partition(), create_kfold_partition(), create_subset()

Examples

small.toy <- create_random_subset(toyml, 10, 3)
medium.toy <- create_random_subset(toyml, 50, 5)

Create a subset of a dataset

Description

Create a subset of a dataset

Usage

create_subset(mdata, rows, cols = NULL)

Arguments

mdata

A mldr dataset

rows

A vector with the instances indexes (names or indexes).

cols

A vector with the attributes indexes (names or indexes).

Value

A new mldr subset

Note

It is not necessary specify the labels attributes because they are included by default.

See Also

Other sampling: create_holdout_partition(), create_kfold_partition(), create_random_subset()

Examples

## Create a dataset with the 20 first examples and the 7 first attributes
small.toy <- create_subset(toyml, seq(20), seq(7))

## Create a random dataset with 50 examples and 5 attributes
random.toy <- create_subset(toyml, sample(100, 50), sample(10, 5))

Multi-label cross-validation

Description

Perform the cross validation procedure for multi-label learning.

Usage

cv(
  mdata,
  method,
  ...,
  cv.folds = 10,
  cv.sampling = c("random", "iterative", "stratified"),
  cv.results = FALSE,
  cv.predictions = FALSE,
  cv.measures = "all",
  cv.cores = getOption("utiml.cores", 1),
  cv.seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset.

method

The multi-label classification method. It also accepts the name of the method as a string.

...

Additional parameters required by the method.

cv.folds

Number of folds. (Default: 10)

cv.sampling

The method to split the data. The default methods are:

random

Split randomly the folds.

iterative

Split the folds considering the labels proportions individually. Some specific label can not occurs in all folds.

stratified

Split the folds considering the labelset proportions.

(Default: "random")

cv.results

Logical value indicating if the folds results should be reported (Default: FALSE).

cv.predictions

Logical value indicating if the predictions should be reported (Default: FALSE).

cv.measures

The measures names to be computed. Call multilabel_measures() to see the expected measures. You can also use "bipartition", "ranking", "label-based", "example-based", "macro-based", "micro-based" and "label-problem" to include a set of measures. (Default: "all").

cv.cores

The number of cores to parallelize the cross validation procedure. (Default: options("utiml.cores", 1))

cv.seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

If cv.results and cv.prediction are FALSE, the return is a vector with the expected multi-label measures, otherwise, a list contained the multi-label and the other expected results (the label measures and/or the prediction object) for each fold.

See Also

Other evaluation: multilabel_confusion_matrix(), multilabel_evaluate(), multilabel_measures()

Examples

#Run 10 folds for BR method
res1 <- cv(toyml, br, base.algorithm="RANDOM", cv.folds=10)

#Run 3 folds for RAkEL method and get the fold results and the prediction
res2 <- cv(mdata=toyml, method="rakel", base.algorithm="RANDOM", k=2, m=10,
 cv.folds=3, cv.results=TRUE, cv.predictions=TRUE)

Dependent Binary Relevance (DBR) for multi-label Classification

Description

Create a DBR classifier to predict multi-label data. This is a simple approach that enables the binary classifiers to discover existing label dependency by themselves. The idea of DBR is exactly the same used in BR+ (the training method is the same, excepted by the argument estimate.models that indicate if the estimated models must be created).

Usage

dbr(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  estimate.models = TRUE,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

estimate.models

Logical value indicating whether is necessary build Binary Relevance classifier for estimate process. The default implementation use BR as estimators, however when other classifier is desirable then use the value FALSE to skip this process. (Default: TRUE).

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of class DBRmodel containing the set of fitted models, including:

labels

A vector with the label names.

estimation

The BR model to estimate the values for the labels. Only when the estimate.models = TRUE.

models

A list of final models named by the label names.

References

Montanes, E., Senge, R., Barranquero, J., Ramon Quevedo, J., Jose Del Coz, J., & Hullermeier, E. (2014). Dependent binary relevance models for multi-label classification. Pattern Recognition, 47(3), 1494-1508.

See Also

Recursive Dependent Binary Relevance

Other Transformation methods: brplus(), br(), cc(), clr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- dbr(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use Random Forest as base algorithm and 2 cores
model <- dbr(toyml, 'RF', cores = 2)

Ensemble of Binary Relevance for multi-label Classification

Description

Create an Ensemble of Binary Relevance model for multilabel classification.

Usage

ebr(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  m = 10,
  subsample = 0.75,
  attr.space = 0.5,
  replacement = TRUE,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

m

The number of Binary Relevance models used in the ensemble. (Default: 10)

subsample

A value between 0.1 and 1 to determine the percentage of training instances that must be used for each classifier. (Default: 0.75)

attr.space

A value between 0.1 and 1 to determine the percentage of attributes that must be used for each classifier. (Default: 0.50)

replacement

Boolean value to define if use sampling with replacement to create the data of the models of the ensemble. (Default: TRUE)

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

This model is composed by a set of Binary Relevance models. Binary Relevance is a simple and effective transformation method to predict multi-label data.

Value

An object of class EBRmodel containing the set of fitted BR models, including:

models

A list of BR models.

nrow

The number of instances used in each training dataset.

ncol

The number of attributes used in each training dataset.

rounds

The number of interactions.

Note

If you want to reproduce the same classification and obtain the same result will be necessary set a flag utiml.mc.set.seed to FALSE.

References

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier Chains for Multi-label Classification. Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, 5782, 254-269.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Ensemble methods: ecc(), eps()

Examples

model <- ebr(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use C5.0 with 90% of instances and only 5 rounds
model <- ebr(toyml, 'C5.0', m = 5, subsample = 0.9)

# Use 75% of attributes
model <- ebr(toyml, attr.space = 0.75)

# Running in 2 cores and define a specific seed
model1 <- ebr(toyml, cores=2, seed = 312)

Ensemble of Classifier Chains for multi-label Classification

Description

Create an Ensemble of Classifier Chains model for multilabel classification.

Usage

ecc(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  m = 10,
  subsample = 0.75,
  attr.space = 0.5,
  replacement = TRUE,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

m

The number of Classifier Chains models used in the ensemble. (Default: 10)

subsample

A value between 0.1 and 1 to determine the percentage of training instances that must be used for each classifier. (Default: 0.75)

attr.space

A value between 0.1 and 1 to determine the percentage of attributes that must be used for each classifier. (Default: 0.50)

replacement

Boolean value to define if use sampling with replacement to create the data of the models of the ensemble. (Default: TRUE)

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

This model is composed by a set of Classifier Chains models. Classifier Chains is a Binary Relevance transformation method based to predict multi-label data. It is different from BR method due the strategy of extended the attribute space with the 0/1 label relevances of all previous classifiers, forming a classifier chain.

Value

An object of class ECCmodel containing the set of fitted CC models, including:

rounds

The number of interactions

models

A list of BR models.

nrow

The number of instances used in each training dataset

ncol

The number of attributes used in each training dataset

Note

If you want to reproduce the same classification and obtain the same result will be necessary set a flag utiml.mc.set.seed to FALSE.

References

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier Chains for Multi-label Classification. Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Computer Science, 5782, 254-269.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Ensemble methods: ebr(), eps()

Examples

# Use all default values
model <- ecc(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use C5.0 with 100% of instances and only 5 rounds
model <- ecc(toyml, 'C5.0', m = 5, subsample = 1)

# Use 75% of attributes
model <- ecc(toyml, attr.space = 0.75)

# Running in 2 cores and define a specific seed
model1 <- ecc(toyml, cores=2, seed=123)

Ensemble of Pruned Set for multi-label Classification

Description

Create an Ensemble of Pruned Set model for multilabel classification.

Usage

eps(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  m = 10,
  subsample = 0.75,
  p = 3,
  strategy = c("A", "B"),
  b = 2,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

m

The number of Pruned Set models used in the ensemble.

subsample

A value between 0.1 and 1 to determine the percentage of training instances that must be used for each classifier. (Default: 0.63)

p

Number of instances to prune. All labelsets that occurs p times or less in the training data is removed. (Default: 3)

strategy

The strategy (A or B) for processing infrequent labelsets. (Default: A).

b

The number used by the strategy for processing infrequent labelsets.

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Details

Pruned Set (PS) is a multi-class transformation that remove the less common classes to predict multi-label data. The ensemble is created with different subsets of the original multi-label data.

Value

An object of class EPSmodel containing the set of fitted models, including:

rounds

The number of interactions

models

A list of PS models.

References

Read, J. (2008). A pruned problem transformation method for multi-label classification. In Proceedings of the New Zealand Computer Science Research Student Conference (pp. 143-150).

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Powerset: lp(), ppt(), ps(), rakel()

Other Ensemble methods: ebr(), ecc()

Examples

model <- eps(toyml, "RANDOM")
pred <- predict(model, toyml)


##Change default configurations
model <- eps(toyml, "RF", m=15, subsample=0.4, p=4, strategy="B", b=1)

Ensemble of Single Label

Description

Create an Ensemble of Single Label model for multilabel classification.

Usage

esl(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  m = 10,
  w = 1,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm (Default: options("utiml.base.algorithm", "SVM"))

m

The number of members used in the ensemble. (Default: 10)

w

The weight given to the choice of the less frequent labels. When it is 0, the labels will be random choose, when it is 1 the complement of the label frequency is used as the probability to choose each label. Values greater than 1 will privilege the less frequent labels. (Default: 1)

...

Others arguments passed to the base algorithm for all subproblems

cores

The number of cores to parallelize the training. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

ESL is an ensemble of multi-class model that uses the less frequent labels. This is based on the label ignore approach different members of the ensemble.

Value

An object of class ESLmodel containing the set of fitted models, including:

labels

A vector with the labels' frequencies.

models

A list of the multi-class models.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- esl(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use SVM as base algorithm
model <- esl(toyml, "SVM")
pred <- predict(model, toyml)

# Change the base algorithm and use 2 CORES
model <- esl(toyml[1:50], 'RF', cores = 2, seed = 123)

# Set a parameters for all subproblems
model <- esl(toyml, 'KNN', k=5)

Fill sparse dataset with 0 or ” values

Description

Transform a sparse dataset filling NA values to 0 or ” based on the column type. Text columns with numeric values will be modified to numerical.

Usage

fill_sparse_mldata(mdata)

Arguments

mdata

The mldr dataset to be filled.

Value

a new mldr object.

See Also

Other pre process: normalize_mldata(), remove_attributes(), remove_labels(), remove_skewness_labels(), remove_unique_attributes(), remove_unlabeled_instances(), replace_nominal_attributes()

Examples

sparse.toy <- toyml
sparse.toy$dataset$ratt10[sample(100, 30)] <- NA
complete.toy <- fill_sparse_mldata(sparse.toy)

Apply a fixed threshold in the results

Description

Transform a prediction matrix with scores/probabilities in a mlresult applying a fixed threshold. A global fixed threshold can be used of all labels or different fixed thresholds, one for each label.

Usage

fixed_threshold(prediction, threshold = 0.5, probability = FALSE)

## Default S3 method:
fixed_threshold(prediction, threshold = 0.5, probability = FALSE)

## S3 method for class 'mlresult'
fixed_threshold(prediction, threshold = 0.5, probability = FALSE)

Arguments

prediction

A matrix with scores/probabilities where the columns are the labels and the rows are the instances.

threshold

A single value between 0 and 1 or a list with threshold values contained one value per label.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Fixed Threshold for matrix or data.frame

  • mlresult: Fixed Threshold for mlresult

References

Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.

See Also

Other threshold: lcard_threshold(), mcut_threshold(), pcut_threshold(), rcut_threshold(), scut_threshold(), subset_correction()

Examples

# Create a prediction matrix with scores
result <- matrix(
 data = rnorm(9, 0.5, 0.2),
 ncol = 3,
 dimnames = list(NULL, c('lbl1',  'lb2', 'lb3'))
)

# Use 0.5 as threshold
fixed_threshold(result)

# Use an threshold for each label
fixed_threshold(result, c(0.4, 0.6, 0.7))

Foodtruck multi-label dataset.

Description

The foodtruck multi-label dataset is a real multi-label dataset, which uses habits and personal information to predict food truck cuisines.

Usage

foodtruck

Format

A mldr object with 407 instances, 21 features and 12 labels:

Details

General Information

  • Cardinality: 2.28

  • Density: 0.19

  • Distinct multi-labels: 117

  • Number of single labelsets: 74

  • Max frequency: 114

Source

The dataset is described in: Rivolli A., Parker L.C., de Carvalho A.C.P.L.F. (2017) Food Truck Recommendation Using Multi-label Classification. In: Oliveira E., Gama J., Vale Z., Lopes Cardoso H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science, vol 10423. Springer, Cham


Hierarchy Of Multilabel classifiER (HOMER)

Description

Create a Hierarchy Of Multilabel classifiER (HOMER).

Usage

homer(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  clusters = 3,
  method = c("balanced", "clustering", "random"),
  iteration = 100,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

clusters

Number maximum of nodes in each level. (Default: 3)

method

The strategy used to organize the labels (create the meta-labels). The options are: "balanced", "clustering" and "random". (Default: "balanced").

iteration

The number max of iterations, used by balanced or clustering methods.

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Details

HOMER is an algorithm for effective and computationally efficient multilabel classification in domains with many labels. It constructs a hierarchy of multilabel classifiers, each one dealing with a much smaller set of labels.

Value

An object of class HOMERmodel containing the set of fitted models, including:

labels

A vector with the label names.

clusters

The number of nodes in each level

models

The Hierarchy of BR models.

References

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2008). Effective and efficient multilabel classification in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD'08) (pp. 30-44). Antwerp, Belgium.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- homer(toyml, "RANDOM")
pred <- predict(model, toyml)


##Change default configurations
model <- homer(toyml, "RF", clusters=5, method="clustering", iteration=10)

Test if a mlresult contains crisp values as default

Description

Test if a mlresult contains crisp values as default

Usage

is.bipartition(mlresult)

Arguments

mlresult

The mlresult object

Value

logical value


Test if a mlresult contains score values as default

Description

Test if a mlresult contains score values as default

Usage

is.probability(mlresult)

Arguments

mlresult

The mlresult object

Value

logical value


Threshold based on cardinality

Description

Find and apply the best threshold based on cardinality of training set. The threshold is choice based on how much the average observed label cardinality is close to the average predicted label cardinality.

Usage

lcard_threshold(prediction, cardinality, probability = FALSE)

## Default S3 method:
lcard_threshold(prediction, cardinality, probability = FALSE)

## S3 method for class 'mlresult'
lcard_threshold(prediction, cardinality, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

cardinality

A real value of training dataset label cardinality, used to define the threshold value.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Cardinality Threshold for matrix or data.frame

  • mlresult: Cardinality Threshold for mlresult

References

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label classification. Machine Learning, 85(3), 333-359.

See Also

Other threshold: fixed_threshold(), mcut_threshold(), pcut_threshold(), rcut_threshold(), scut_threshold(), subset_correction()

Examples

prediction <- matrix(runif(16), ncol = 4)
lcard_threshold(prediction, 2.1)

LIFT for multi-label Classification

Description

Create a multi-label learning with Label specIfic FeaTures (LIFT) model.

Usage

lift(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ratio = 0.1,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

ratio

Control the number of clusters being retained. Must be between 0 and 1. (Default: 0.1)

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

LIFT firstly constructs features specific to each label by conducting clustering analysis on its positive and negative instances, and then performs training and testing by querying the clustering results.

Value

An object of class LIFTmodel containing the set of fitted models, including:

labels

A vector with the label names.

models

A list of the generated models, named by the label names.

References

Zhang, M.-L., & Wu, L. (2015). Lift: Multi-Label Learning with Label-Specific Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(1), 107-120.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- lift(toyml, "RANDOM")
pred <- predict(model, toyml)


# Runing lift with a specific ratio
model <- lift(toyml, "RF", 0.15)

Label Powerset for multi-label Classification

Description

Create a Label Powerset model for multilabel classification.

Usage

lp(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

...

Others arguments passed to the base algorithm for all subproblems

cores

Not used

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Details

Label Powerset is a simple transformation method to predict multi-label data. This is based on the multi-class approach to build a model where the classes are each labelset.

Value

An object of class LPmodel containing the set of fitted models, including:

labels

A vector with the label names.

model

A multi-class model.

References

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757-1771.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Powerset: eps(), ppt(), ps(), rakel()

Examples

model <- lp(toyml, "RANDOM")
pred <- predict(model, toyml)

Meta-BR or 2BR for multi-label Classification

Description

Create a Meta-BR (MBR) classifier to predict multi-label data. To this, two round of Binary Relevance is executed, such that, the first step generates new attributes to enrich the second prediction.

Usage

mbr(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  folds = 1,
  phi = 0,
  ...,
  predict.params = list(),
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

folds

The number of folds used in internal prediction. If this value is 1 all dataset will be used in the first prediction. (Default: 1)

phi

A value between 0 and 1 to determine the correlation coefficient, The value 0 include all labels in the second phase and the 1 only the predicted label. (Default: 0)

...

Others arguments passed to the base algorithm for all subproblems.

predict.params

A list of default arguments passed to the predictor algorithm. (Default: list())

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

This implementation use complete training set for both training and prediction steps of 2BR. However, the phi parameter may be used to remove labels with low correlations on the second step.

Value

An object of class MBRmodel containing the set of fitted models, including:

labels

A vector with the label names.

phi

The value of phi parameter.

correlation

The matrix of label correlations used in combination with phi parameter to define the labels used in the second step.

basemodel

The BRModel used in the first iteration.

models

A list of models named by the label names used in the second iteration.

References

Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., & Vlahavas, I. (2009). Correlation-based pruning of stacked binary relevance models for multi-label learning. In Proceedings of the Workshop on Learning from Multi-Label Data (MLD'09) (pp. 22-30). Godbole, S., & Sarawagi, S. (2004). Discriminative Methods for Multi-labeled Classification. In Data Mining and Knowledge Discovery (pp. 1-26).

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), ns(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Stacking methods: brplus()

Examples

model <- mbr(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use 10 folds and different phi correlation with C5.0 classifier
model <- mbr(toyml, 'C5.0', 10, 0.2)

# Run with 2 cores
 model <- mbr(toyml, "SVM", cores = 2, seed = 123)

# Set a specific parameter
model <- mbr(toyml, 'KNN', k=5)

Maximum Cut Thresholding (MCut)

Description

The Maximum Cut (MCut) automatically determines a threshold for each instance that selects a subset of labels with higher scores than others. This leads to the selection of the middle of the interval defined by these two scores as the threshold.

Usage

mcut_threshold(prediction, probability = FALSE)

## Default S3 method:
mcut_threshold(prediction, probability = FALSE)

## S3 method for class 'mlresult'
mcut_threshold(prediction, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Maximum Cut Thresholding (MCut) method for matrix

  • mlresult: Maximum Cut Thresholding (MCut) for mlresult

References

Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy for Multi-label Classification. In 11th International Symposium, IDA 2012 (pp. 172-183).

See Also

Other threshold: fixed_threshold(), lcard_threshold(), pcut_threshold(), rcut_threshold(), scut_threshold(), subset_correction()

Examples

prediction <- matrix(runif(16), ncol = 4)
mcut_threshold(prediction)

Join a list of multi-label confusion matrix

Description

Join a list of multi-label confusion matrix

Usage

merge_mlconfmat(object, ...)

Arguments

object

A mlconfmat object or a list of mlconfmat objects

...

mlconfmat objects

Value

mlconfmat


Fix the mldr dataset to use factors

Description

Fix the mldr dataset to use factors

Usage

mldata(mdata)

Arguments

mdata

A mldr dataset.

Value

A mldr object

Examples

toyml <- mldata(toyml)

Multi-label KNN (ML-KNN) for multi-label Classification

Description

Create a ML-KNN classifier to predict multi-label data. It is a multi-label lazy learning, which is derived from the traditional K-nearest neighbor (KNN) algorithm. For each unseen instance, its K nearest neighbors in the training set are identified and based on statistical information gained from the label sets of these neighboring instances, the maximum a posteriori (MAP) principle is utilized to determine the label set for the unseen instance.

Usage

mlknn(
  mdata,
  k = 10,
  s = 1,
  distance = "euclidean",
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

k

The number of neighbors. (Default: 10)

s

Smoothing parameter controlling the strength of uniform prior. When it is set to be 1, we have the Laplace smoothing. (Default: 1).

distance

The name of method used to compute the distance. See dist to the list of options. (Default: "euclidian")

...

Not used.

cores

Ignored because this method does not support multi-core.

seed

Ignored because this method is deterministic.

Value

An object of class MLKNNmodel containing the set of fitted models, including:

labels

A vector with the label names.

prior

The prior probability of each label to occur.

posterior

The posterior probability of each label to occur given that k neighbors have it.

References

Zhang, M.L. L., & Zhou, Z.H. H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038-2048.

Examples

model <- mlknn(toyml, k=3)
pred <- predict(model, toyml)

Prediction transformation problems

Description

Base classifiers are used to build models to solve the the transformation problems. To create a new base classifier, two steps are necessary:

  1. Create a train method

  2. Create a prediction method

This section is about how to create the second step: a prediction method. To create a new train method see mltrain documentation.

Usage

mlpredict(model, newdata, ...)

Arguments

model

An object model returned by some mltrain method, its class determine the name of this method.

newdata

A data.frame with the new data to be predicted.

...

Others arguments passed to the predict method.

Value

A matrix with the probabilities of each class value/example, where the rows are the examples and the columns the class values.

How to create a new prediction base method

Fist is necessary to know the class of model generate by the respective train method, because this name determines the method name. It must start with 'mlpredict.', followed by the model class name, e.g. a model with class 'fooModel' must be called as mlpredict.fooModel.

After defined the name, you need to implement your prediction base method. The model built on mltrain is available on model parameter and the newdata is the data to be predict.

The return of this method must be a data.frame with two columns called "prediction" and "probability". The first column contains the predicted class and the second the probability/score/confidence of this prediction. The rows represents the examples.

Examples

# Create a method that predict always the first class
# The model must be of the class 'fooModel'
mlpredict.fooModel <- function (model, newdata, ...) {
   # Predict the first class with a random confidence
   data.frame(
     prediction = rep(model$classes[1], nrow(newdata)),
     probability = sapply(runif(nrow(newdata)), function (score) {
       max(score, 1 - score)
     }),
     row.names = rownames(newdata)
   )
}


# Create a SVM predict method using the e1071 package (the class of SVM model
# from e1071 package is 'svm')
library(e1071)
mlpredict.svm <- function (dataset, newdata, ...) {
   result <- predict(model, newdata, probability = TRUE, ...)
   attr(result, 'probabilities')
}

Build transformation models

Description

Base classifiers are used to build models to solve the the transformation problems. To create a new base classifier, two steps are necessary:

  1. Create a train method

  2. Create a prediction method

This section is about how to create the first step: a train method. To create a new predict model see mlpredict documentation.

Usage

mltrain(object, ...)

Arguments

object

A mltransformation object. This is used as a list and contains at least five values:

object$data

A data.frame with the train data, where the columns are the attributes and the rows are the examples.

object$labelname

The name of the class column.

object$labelindex

The column index of the class.

object$mldataset

The name of multi-label dataset.

object$mlmethod

The name of the multi-label method.

Others values may be specified by the multi-label method.

...

Others arguments passed to the base method.

Value

A model object. The class of this model can be of any type, however, this object will be passed to the respective mlpredict method.

How to create a new train base method

First, is necessary to define a name of your classifier, because this name determines the method name. The base method name must start with mltrain.base followed by the designed name, e.g. a 'FOO' classify must be defined as mltrain.baseFOO (we suggest always use upper case names).

Next, your method must receive at least two parameters (object, ...). Use object$data[, object$labelindex] or object$data[, object$labelname] to access the labels values and use object$data[, -object$labelindex] to access the predictive attributes. If you need to know which are the multi-label dataset and method, use object$mldataset and object$mlmethod, respectively.

Finally, your method should return a model that will be used by the mlpredict method. Remember, that your method may be used to build binary and multi-class models.

Examples

# Create a empty model of type FOO
mltrain.baseFOO <- function (object, ...) {
   mymodel <- list(
     classes = as.character(unique(object$data[, object$labelindex]))
   )
   class(mymodel) <- 'fooModel'
   mymodel
}

# Using this base method with Binary Relevance
brmodel <- br(toyml, 'FOO')



# Create a SVM method using the e1071 package
library(e1071)
mltrain.baseSVM <- function (object, ...) {
   traindata <- object$data[, -object$labelindex]
   labeldata <- object$data[, object$labelindex]
   model <- svm(traindata, labeldata, probability = TRUE, ...)
   model
}

Compute the confusion matrix for a multi-label prediction

Description

The multi-label confusion matrix is an object that contains the prediction, the expected values and also a lot of pre-processed information related with these data.

Usage

multilabel_confusion_matrix(mdata, mlresult)

Arguments

mdata

A mldr dataset

mlresult

A mlresult prediction

Value

A mlconfmat object that contains:

Z

The bipartition matrix prediction.

Fx

The score/probability matrix prediction.

R

The ranking matrix prediction.

Y

The expected matrix bipartition.

TP

The True Positive matrix values.

FP

The False Positive matrix values.

TN

The True Negative matrix values.

FN

The False Negative matrix values.

Zi

The total of positive predictions for each instance.

Yi

The total of positive expected for each instance.

TPi

The total of True Positive predictions for each instance.

FPi

The total of False Positive predictions for each instance.

TNi

The total of True Negative predictions for each instance.

FNi

The total False Negative predictions for each instance.

Zl

The total of positive predictions for each label.

Yl

The total of positive expected for each label.

TPl

The total of True Positive predictions for each label.

FPl

The total of False Positive predictions for each label.

TNl

The total of True Negative predictions for each label.

FNl

The total False Negative predictions for each label.

See Also

Other evaluation: cv(), multilabel_evaluate(), multilabel_measures()

Examples

prediction <- predict(br(toyml), toyml)

mlconfmat <- multilabel_confusion_matrix(toyml, prediction)

# Label with the most number of True Positive values
which.max(mlconfmat$TPl)

# Number of wrong predictions for each label
errors <- mlconfmat$FPl + mlconfmat$FNl

# Examples predict with all labels
which(mlconfmat$Zi == toyml$measures$num.labels)

# You can join one or more mlconfmat
part1 <- create_subset(toyml, 1:50)
part2 <- create_subset(toyml, 51:100)
confmatp1 <- multilabel_confusion_matrix(part1, prediction[1:50, ])
confmatp2 <- multilabel_confusion_matrix(part2, prediction[51:100, ])
mlconfmat <- confmatp1 + confmatp2

Evaluate multi-label predictions

Description

This method is used to evaluate multi-label predictions. You can create a confusion matrix object or use directly the test dataset and the predictions. You can also specify which measures do you desire use.

Usage

multilabel_evaluate(object, ...)

## S3 method for class 'mldr'
multilabel_evaluate(object, mlresult, measures = c("all"), labels = FALSE, ...)

## S3 method for class 'mlconfmat'
multilabel_evaluate(object, measures = c("all"), labels = FALSE, ...)

Arguments

object

A mldr dataset or a mlconfmat confusion matrix

...

Extra parameters to specific measures.

mlresult

The prediction result (Optional, required only when the mldr is used).

measures

The measures names to be computed. Call multilabel_measures() to see the expected measures. You can also use "bipartition", "ranking", "label-based", "example-based", "macro-based", "micro-based" and "label-problem" to include a set of measures. (Default: "all").

labels

Logical value defining if the label results should be also returned. (Default: FALSE)

Value

If labels is FALSE return a vector with the expected multi-label measures, otherwise, a list contained the multi-label and label measures.

Methods (by class)

  • mldr: Default S3 method

  • mlconfmat: Default S3 method

References

Madjarov, G., Kocev, D., Gjorgjevikj, D., & Dzeroski, S. (2012). An extensive experimental comparison of methods for multi-label learning. Pattern Recognition, 45(9), 3084-3104. Zhang, M.-L., & Zhou, Z.-H. (2014). A Review on Multi-Label Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 26(8), 1819-1837. Gibaja, E., & Ventura, S. (2015). A Tutorial on Multilabel Learning. ACM Comput. Surv., 47(3), 52:1-2:38.

See Also

Other evaluation: cv(), multilabel_confusion_matrix(), multilabel_measures()

Examples

prediction <- predict(br(toyml), toyml)

# Compute all measures
multilabel_evaluate(toyml, prediction)
multilabel_evaluate(toyml, prediction, labels=TRUE) # Return a list

# Compute bipartition measures
multilabel_evaluate(toyml, prediction, "bipartition")

# Compute multilples measures
multilabel_evaluate(toyml, prediction, c("accuracy", "F1", "macro-based"))

# Compute the confusion matrix before the measures
cm <- multilabel_confusion_matrix(toyml, prediction)
multilabel_evaluate(cm)
multilabel_evaluate(cm, "example-based")
multilabel_evaluate(cm, c("hamming-loss", "subset-accuracy", "F1"))

Return the name of all measures

Description

Return the name of all measures

Usage

multilabel_measures()

Value

array of character contained the measures names.

See Also

Other evaluation: cv(), multilabel_confusion_matrix(), multilabel_evaluate()

Examples

multilabel_measures()

Create a mlresult object

Description

Create a mlresult object

Usage

multilabel_prediction(
  bipartitions,
  probabilities,
  probability = getOption("utiml.use.probs", TRUE),
  empty.prediction = getOption("utiml.empty.prediction", FALSE)
)

Arguments

bipartitions

The matrix of predictions (bipartition values), only 0 and 1

probabilities

The matrix of probability/confidence of a prediction, between 0..1

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: getOption("utiml.use.probs", TRUE))

empty.prediction

A logical value. If TRUE the predicted values may contains empty values, otherwise at least one label will be positive for each instance.

Value

An object of type mlresult

Examples

probs <- matrix(
 runif(90), ncol=3, dimnames = list(1:30, c("y1", "y2", "y3"))
)
preds <- matrix(
 as.numeric(probs > 0.5), ncol=3, dimnames = list(1:30, c("y1", "y2", "y3"))
)
multilabel_prediction(probs, preds)

Normalize numerical attributes

Description

Normalize all numerical attributes to values between 0 and 1. The highest value is changed to 1 and the lowest value to 0.

Usage

normalize_mldata(mdata)

Arguments

mdata

The mldr dataset to be normalized.

Value

a new mldr object.

See Also

Other pre process: fill_sparse_mldata(), remove_attributes(), remove_labels(), remove_skewness_labels(), remove_unique_attributes(), remove_unlabeled_instances(), replace_nominal_attributes()

Examples

norm.toy <- normalize_mldata(toyml)

Nested Stacking for multi-label Classification

Description

Create a Nested Stacking model for multilabel classification.

Usage

ns(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  chain = NA,
  ...,
  predict.params = list(),
  cores = NULL,
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

chain

A vector with the label names to define the chain order. If empty the chain is the default label sequence of the dataset. (Default: NA)

...

Others arguments passed to the base algorithm for all subproblems.

predict.params

A list of default arguments passed to the predict algorithm. (default: list())

cores

Ignored because this method does not support multi-core.

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Details

Nested Stacking is based on Classifier Chains transformation method to predict multi-label data. It differs from CC to predict the labels values in the training step and to regularize the output based on the labelsets available on training data.

Value

An object of class NSmodel containing the set of fitted models, including:

chain

A vector with the chain order

labels

A vector with the label names in expected order

labelset

The matrix containing only labels values

models

A list of models named by the label names.

References

Senge, R., Coz, J. J. del, & Hullermeier, E. (2013). Rectifying classifier chains for multi-label classification. In Workshop of Lernen, Wissen & Adaptivitat (LWA 2013) (pp. 162-169). Bamberg, Germany.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ppt(), prudent(), ps(), rakel(), rdbr(), rpc()

Examples

model <- ns(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use a specific chain with C5.0 classifier
mychain <- sample(rownames(toyml$labels))
model <- ns(toyml, 'C5.0', mychain)

# Set a specific parameter
model <- ns(toyml, 'KNN', k=5)

Create the multi-label dataset from folds

Description

This is a simple way to use k-fold cross validation.

Usage

partition_fold(kfold, n, has.validation = FALSE)

Arguments

kfold

A kFoldPartition object obtained from use of the method create_kfold_partition.

n

The number of the fold to separated train and test subsets.

has.validation

Logical value that indicate if a validation dataset will be used. (Default: FALSE)

Value

A list contained train and test mldr dataset:

trainThe mldr dataset with train examples, that includes all examples except those that are in test and validation samples testThe mldr dataset with test examples, defined by the number of the fold validationOptionally, only if has.validation = TRUE. The mldr dataset with validation examples

Examples

folds <- create_kfold_partition(toyml, 10)

# Using the first partition
dataset <- partition_fold(folds, 1)
names(dataset)
## [1] "train" "test"

# All iterations
for (i in 1:10) {
   dataset <- partition_fold(folds, i)
   #dataset$train
   #dataset$test
}

# Using 3 folds validation
dataset <- partition_fold(folds, 3, TRUE)
# dataset$train, dataset$test, #dataset$validation

Proportional Thresholding (PCut)

Description

Define the proportion of examples for each label will be positive. The Proportion Cut (PCut) method can be a label-wise or global method that calibrates the threshold(s) from the training data globally or per label.

Usage

pcut_threshold(prediction, ratio, probability = FALSE)

## Default S3 method:
pcut_threshold(prediction, ratio, probability = FALSE)

## S3 method for class 'mlresult'
pcut_threshold(prediction, ratio, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

ratio

A single value between 0 and 1 or a list with ratio values contained one value per label.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Proportional Thresholding (PCut) method for matrix

  • mlresult: Proportional Thresholding (PCut) for mlresult

References

Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.

Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy for Multi-label Classification. In 11th International Symposium, IDA 2012 (pp. 172-183).

See Also

Other threshold: fixed_threshold(), lcard_threshold(), mcut_threshold(), rcut_threshold(), scut_threshold(), subset_correction()

Examples

prediction <- matrix(runif(16), ncol = 4)
pcut_threshold(prediction, .45)

Pruned Problem Transformation for multi-label Classification

Description

Create a Pruned Problem Transformation model for multilabel classification.

Usage

ppt(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  p = 3,
  info.loss = FALSE,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

p

Number of instances to prune. All labelsets that occurs p times or less in the training data is removed. (Default: 3)

info.loss

Logical value where TRUE means discard infrequent labelsets and FALSE means reintroduce infrequent labelsets via subsets. (Default: FALSE)

...

Others arguments passed to the base algorithm for all subproblems

cores

Not used

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Details

Pruned Problem Transformation (PPT) is a multi-class transformation that remove the less common classes to predict multi-label data.

Value

An object of class PPTmodel containing the set of fitted models, including:

labels

A vector with the label names.

model

A LP model contained only the most common labelsets.

References

Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In Proceedings - IEEE International Conference on Data Mining, ICDM (pp. 995–1000). Read, J. (2008). A pruned problem transformation method for multi-label classification. In Proceedings of the New Zealand Computer Science Research Student Conference (pp. 143-150).

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), prudent(), ps(), rakel(), rdbr(), rpc()

Other Powerset: eps(), lp(), ps(), rakel()

Examples

model <- ppt(toyml, "RANDOM")
pred <- predict(model, toyml)


##Change default configurations
model <- ppt(toyml, "RF", p=4, info.loss=TRUE)

Predict Method for BASELINE

Description

This function predicts values based upon a model trained by baseline.

Usage

## S3 method for class 'BASELINEmodel'
predict(object, newdata, probability = getOption("utiml.use.probs", TRUE), ...)

Arguments

object

Object of class 'BASELINEmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

not used.

Value

An object of type mlresult, based on the parameter probability.

See Also

Baseline

Examples

model <- baseline(toyml)
pred <- predict(model, toyml)

Predict Method for Binary Relevance

Description

This function predicts values based upon a model trained by br.

Usage

## S3 method for class 'BRmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'BRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Binary Relevance (BR)

Examples

model <- br(toyml, "RANDOM")
pred <- predict(model, toyml)


# Predict SVM scores
model <- br(toyml, "SVM")
pred <- predict(model, toyml)

# Predict SVM bipartitions running in 2 cores
pred <- predict(model, toyml, probability = FALSE, CORES = 2)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

Predict Method for BR+ (brplus)

Description

This function predicts values based upon a model trained by brplus.

Usage

## S3 method for class 'BRPmodel'
predict(
  object,
  newdata,
  strategy = c("Dyn", "Stat", "Ord", "NU"),
  order = list(),
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'BRPmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

strategy

The strategy prefix to determine how to estimate the values of the augmented features of unlabeled examples.

The possible values are: 'Dyn', 'Stat', 'Ord' or 'NU'. See the description for more details. (Default: 'Dyn').

order

The label sequence used to update the initial labels results based on the final results. This argument is used only when the strategy = 'Ord' (Default: list())

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

The strategies of estimate the values of the new features are separated in two groups:

No Update (NU)

This use the initial prediction of BR to all labels. This name is because no modification is made to the initial estimates of the augmented features during the prediction phase

With Update

This strategy update the initial prediction in that the final predict occurs. There are three possibilities to define the order of label sequences:

Specific order (Ord)

The order is define by the user, require a new argument called order.

Static order (Stat)

Use the frequency of single labels in the training set to define the sequence, where the least frequent labels are predicted first

Dinamic order (Dyn)

Takes into account the confidence of the initial prediction for each independent single label, to define a sequence, where the labels predicted with less confidence are updated first.

Value

An object of type mlresult, based on the parameter probability.

References

Cherman, E. A., Metz, J., & Monard, M. C. (2012). Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Systems with Applications, 39(2), 1647-1655.

See Also

BR+

Examples

# Predict SVM scores
model <- brplus(toyml, "RANDOM")
pred <- predict(model, toyml)


# Predict SVM bipartitions and change the method to use No Update strategy
pred <- predict(model, toyml, strategy = 'NU', probability = FALSE)

# Predict using a random sequence to update the labels
labels <- sample(rownames(toyml$labels))
pred <- predict(model, toyml, strategy = 'Ord', order = labels)

# Passing a specif parameter for SVM predict method
pred <- predict(model, toyml, na.action = na.fail)

Predict Method for Classifier Chains

Description

This function predicts values based upon a model trained by cc.

Usage

## S3 method for class 'CCmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = NULL,
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'CCmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

Ignored because this method does not support multi-core.

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

Note

The Classifier Chains prediction can not be parallelized

See Also

Classifier Chains (CC)

Examples

model <- cc(toyml, "RANDOM")
pred <- predict(model, toyml)


# Predict SVM bipartitions
pred <- predict(model, toyml, prob = FALSE)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

Predict Method for CLR

Description

This function predicts values based upon a model trained by clr.

Usage

## S3 method for class 'CLRmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'CLRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Binary Relevance (BR)

Examples

model <- clr(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for DBR

Description

This function predicts values based upon a model trained by dbr. In general this method is a restricted version of predict.BRPmodel using the 'NU' strategy.

Usage

## S3 method for class 'DBRmodel'
predict(
  object,
  newdata,
  estimative = NULL,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'DBRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

estimative

A matrix containing the bipartition result of other multi-label classification algorithm or an mlresult object with the predictions.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

As new feature is possible to use other multi-label classifier to predict the estimate values of each label. To this use the prediction argument to inform a result of other multi-label algorithm.

Value

An object of type mlresult, based on the parameter probability.

References

Montanes, E., Senge, R., Barranquero, J., Ramon Quevedo, J., Jose Del Coz, J., & Hullermeier, E. (2014). Dependent binary relevance models for multi-label classification. Pattern Recognition, 47(3), 1494-1508.

See Also

Dependent Binary Relevance (DBR)

Examples

# Predict SVM scores
model <- dbr(toyml)
pred <- predict(model, toyml)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

# Using other classifier (EBR) to made the labels estimatives
estimative <- predict(ebr(toyml), toyml)
model <- dbr(toyml, estimate.models = FALSE)
pred <- predict(model, toyml, estimative = estimative)

Predict Method for Ensemble of Binary Relevance

Description

This method predicts values based upon a model trained by ebr.

Usage

## S3 method for class 'EBRmodel'
predict(
  object,
  newdata,
  vote.schema = "maj",
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'EBRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

vote.schema

Define the way that ensemble must compute the predictions. The default valid options are: c("avg", "maj", "max", "min"). If NULL then all predictions are returned. (Default: 'maj')

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Ensemble of Binary Relevance (EBR) Compute Multi-label Predictions

Examples

# Predict SVM scores
model <- ebr(toyml)
pred <- predict(model, toyml)

# Predict SVM bipartitions running in 2 cores
pred <- predict(model, toyml, prob = FALSE, cores = 2)

# Return the classes with the highest score
pred <- predict(model, toyml, vote = 'max')

Predict Method for Ensemble of Classifier Chains

Description

This method predicts values based upon a model trained by ecc.

Usage

## S3 method for class 'ECCmodel'
predict(
  object,
  newdata,
  vote.schema = "maj",
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'ECCmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

vote.schema

Define the way that ensemble must compute the predictions. The default valid options are: c("avg", "maj", "max", "min"). If NULL then all predictions are returned. (Default: 'maj')

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Ensemble of Classifier Chains (ECC)

Examples

# Predict SVM scores
model <- ecc(toyml)
pred <- predict(model, toyml)

# Predict SVM bipartitions running in 2 cores
pred <- predict(model, toyml, probability = FALSE, cores = 2)

# Return the classes with the highest score
pred <- predict(model, toyml, vote.schema = 'max')

Predict Method for Ensemble of Pruned Set Transformation

Description

This function predicts values based upon a model trained by eps. Different from the others methods the probability value, is actually, the sum of all probability predictions such as it is described in the original paper.

Usage

## S3 method for class 'EPSmodel'
predict(
  object,
  newdata,
  threshold = 0.5,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'EPSmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

threshold

A threshold value for producing bipartitions. (Default: 0.5)

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the prediction. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Ensemble of Pruned Set (EPS)

Examples

model <- eps(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for Ensemble of Single Label

Description

This function predicts values based upon a model trained by esl.

Usage

## S3 method for class 'ESLmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'ESLmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Ensemble of Single Label (ESL)

Examples

model <- esl(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for HOMER

Description

This function predicts values based upon a model trained by homer.

Usage

## S3 method for class 'HOMERmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'HOMERmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the prediction. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Hierarchy Of Multilabel classifiER (HOMER)

Examples

model <- homer(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for LIFT

Description

This function predicts values based upon a model trained by lift.

Usage

## S3 method for class 'LIFTmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'LIFTmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

LIFT

Examples

model <- lift(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for Label Powerset

Description

This function predicts values based upon a model trained by lp.

Usage

## S3 method for class 'LPmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'LPmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

Not used

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Label Powerset (LP)

Examples

model <- lp(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for Meta-BR/2BR

Description

This function predicts values based upon a model trained by mbr.

Usage

## S3 method for class 'MBRmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'MBRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Meta-BR (MBR or 2BR)

Examples

# Predict SVM scores
model <- mbr(toyml)
pred <- predict(model, toyml)

# Predict SVM bipartitions
pred <- predict(model, toyml, probability = FALSE)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

Predict Method for ML-KNN

Description

This function predicts values based upon a model trained by mlknn. '

Usage

## S3 method for class 'MLKNNmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'MLKNNmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Not used.

cores

Ignored because this method does not support multi-core.

seed

Ignored because this method is deterministic.

Value

An object of type mlresult, based on the parameter probability.

See Also

ML-KNN

Examples

model <- mlknn(toyml)
pred <- predict(model, toyml)

Predict Method for Nested Stacking

Description

This function predicts values based upon a model trained by ns. The scores of the prediction was adapted once this method uses a correction of labelsets to predict only classes present on training data. To more information about this implementation see subset_correction.

Usage

## S3 method for class 'NSmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = NULL,
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'NSmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

Ignored because this method does not support multi-core.

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Nested Stacking (NS)

Examples

model <- ns(toyml, "RANDOM")
pred <- predict(model, toyml)


# Predict SVM bipartitions
pred <- predict(model, toyml, probability = FALSE)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

Predict Method for Pruned Problem Transformation

Description

This function predicts values based upon a model trained by ppt.

Usage

## S3 method for class 'PPTmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'PPTmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

Not used

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Pruned Problem Transformation (PPT)

Examples

model <- ppt(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for PruDent

Description

This function predicts values based upon a model trained by prudent.

Usage

## S3 method for class 'PruDentmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'PruDentmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

PruDent

Examples

# Predict SVM scores
model <- prudent(toyml)
pred <- predict(model, toyml)

# Predict SVM bipartitions
pred <- predict(model, toyml, probability = FALSE)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

Predict Method for Pruned Set Transformation

Description

This function predicts values based upon a model trained by ps.

Usage

## S3 method for class 'PSmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'PSmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

Not used

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Pruned Set (PS)

Examples

model <- ps(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for RAkEL

Description

This function predicts values based upon a model trained by rakel.

Usage

## S3 method for class 'RAkELmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'RAkELmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the prediction. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Random k Labelsets (RAkEL)

Examples

model <- rakel(toyml, "RANDOM")
pred <- predict(model, toyml)

Predict Method for RDBR

Description

This function predicts values based upon a model trained by rdbr. In general this method is a recursive version of predict.DBRmodel.

Usage

## S3 method for class 'RDBRmodel'
predict(
  object,
  newdata,
  estimative = NULL,
  max.iterations = 5,
  batch.mode = FALSE,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'RDBRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

estimative

A matrix containing the bipartition result of other multi-label classification algorithm or an mlresult object with the predictions.

max.iterations

The maximum allowed iterations of the RDBR technique. (Default: 5)

batch.mode

Logical value to determine if use the batch re-estimation. If FALSE then use the stochastic re-estimation strategy. (Default: FALSE)

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

Two versions of the update strategy of the estimated labels are implemented. The batch re-estimates the labels only when a complete current label vector is available. The stochastic uses re-estimated labels as soon as they become available. This second does not support parallelize the prediction, however stabilizes earlier than batch mode.

Value

An object of type mlresult, based on the parameter probability.

References

Rauber, T. W., Mello, L. H., Rocha, V. F., Luchi, D., & Varejao, F. M. (2014). Recursive Dependent Binary Relevance Model for Multi-label Classification. In Advances in Artificial Intelligence - IBERAMIA, 206-217.

See Also

Recursive Dependent Binary Relevance (RDBR)

Examples

# Predict SVM scores
model <- rdbr(toyml)
pred <- predict(model, toyml)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

# Use the batch mode and increase the max number of iteration to 10
pred <- predict(model, toyml, max.iterations = 10, batch.mode = TRUE)

# Using other classifier (EBR) to made the labels estimatives
estimative <- predict(ebr(toyml), toyml, probability = FALSE)
model <- rdbr(toyml, estimate.models = FALSE)
pred <- predict(model, toyml, estimative = estimative)

Predict Method for RPC

Description

This function predicts values based upon a model trained by rpc.

Usage

## S3 method for class 'RPCmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'RPCmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Binary Relevance (BR)

Examples

model <- rpc(toyml, "RANDOM")
pred <- predict(model, toyml)

Print BR model

Description

Print BR model

Usage

## S3 method for class 'BRmodel'
print(x, ...)

Arguments

x

The br model

...

ignored

Value

No return value, called for print model's detail


Print BRP model

Description

Print BRP model

Usage

## S3 method for class 'BRPmodel'
print(x, ...)

Arguments

x

The brp model

...

ignored

Value

No return value, called for print model's detail


Print CC model

Description

Print CC model

Usage

## S3 method for class 'CCmodel'
print(x, ...)

Arguments

x

The cc model

...

ignored

Value

No return value, called for print model's detail


Print CLR model

Description

Print CLR model

Usage

## S3 method for class 'CLRmodel'
print(x, ...)

Arguments

x

The br model

...

ignored

Value

No return value, called for print model's detail


Print DBR model

Description

Print DBR model

Usage

## S3 method for class 'DBRmodel'
print(x, ...)

Arguments

x

The dbr model

...

ignored

Value

No return value, called for print model's detail


Print EBR model

Description

Print EBR model

Usage

## S3 method for class 'EBRmodel'
print(x, ...)

Arguments

x

The ebr model

...

ignored

Value

No return value, called for print model's detail


Print ECC model

Description

Print ECC model

Usage

## S3 method for class 'ECCmodel'
print(x, ...)

Arguments

x

The ecc model

...

ignored

Value

No return value, called for print model's detail


Print EPS model

Description

Print EPS model

Usage

## S3 method for class 'EPSmodel'
print(x, ...)

Arguments

x

The ps model

...

ignored

Value

No return value, called for print model's detail


Print ESL model

Description

Print ESL model

Usage

## S3 method for class 'ESLmodel'
print(x, ...)

Arguments

x

The esl model

...

ignored

Value

No return value, called for print model's detail


Print a kFoldPartition object

Description

Print a kFoldPartition object

Usage

## S3 method for class 'kFoldPartition'
print(x, ...)

Arguments

x

The kFoldPartition object

...

ignored

Value

No return value, called for print folds' detail


Print LIFT model

Description

Print LIFT model

Usage

## S3 method for class 'LIFTmodel'
print(x, ...)

Arguments

x

The lift model

...

ignored

Value

No return value, called for print model's detail


Print LP model

Description

Print LP model

Usage

## S3 method for class 'LPmodel'
print(x, ...)

Arguments

x

The lp model

...

ignored

Value

No return value, called for print model's detail


Print Majority model

Description

Print Majority model

Usage

## S3 method for class 'majorityModel'
print(x, ...)

Arguments

x

The base model

...

ignored

Value

No return value, called for print model's detail


Print MBR model

Description

Print MBR model

Usage

## S3 method for class 'MBRmodel'
print(x, ...)

Arguments

x

The mbr model

...

ignored

Value

No return value, called for print model's detail


Print a Multi-label Confusion Matrix

Description

Print a Multi-label Confusion Matrix

Usage

## S3 method for class 'mlconfmat'
print(x, ...)

Arguments

x

The mlconfmat

...

ignored

Value

No return value, called for print a confusion matrix


Print MLKNN model

Description

Print MLKNN model

Usage

## S3 method for class 'MLKNNmodel'
print(x, ...)

Arguments

x

The mlknn model

...

ignored

Value

No return value, called for print model's detail


Print the mlresult

Description

Print the mlresult

Usage

## S3 method for class 'mlresult'
print(x, ...)

Arguments

x

The mlresult to print

...

Extra parameters for print method

Value

No return value, called for print a prediction result


Print NS model

Description

Print NS model

Usage

## S3 method for class 'NSmodel'
print(x, ...)

Arguments

x

The ns model

...

ignored

Value

No return value, called for print model's detail


Print PPT model

Description

Print PPT model

Usage

## S3 method for class 'PPTmodel'
print(x, ...)

Arguments

x

The ppt model

...

ignored

Value

No return value, called for print model's detail


Print PruDent model

Description

Print PruDent model

Usage

## S3 method for class 'PruDentmodel'
print(x, ...)

Arguments

x

The prudent model

...

ignored

Value

No return value, called for print model's detail


Print PS model

Description

Print PS model

Usage

## S3 method for class 'PSmodel'
print(x, ...)

Arguments

x

The ps model

...

ignored

Value

No return value, called for print model's detail


Print RAkEL model

Description

Print RAkEL model

Usage

## S3 method for class 'RAkELmodel'
print(x, ...)

Arguments

x

The rakel model

...

ignored

Value

No return value, called for print model's detail


Print Random model

Description

Print Random model

Usage

## S3 method for class 'randomModel'
print(x, ...)

Arguments

x

The base model

...

ignored

Value

No return value, called for print model's detail


Print RDBR model

Description

Print RDBR model

Usage

## S3 method for class 'RDBRmodel'
print(x, ...)

Arguments

x

The rdbr model

...

ignored

Value

No return value, called for print model's detail


Print RPC model

Description

Print RPC model

Usage

## S3 method for class 'RPCmodel'
print(x, ...)

Arguments

x

The br model

...

ignored

Value

No return value, called for print model's detail


PruDent classifier for multi-label Classification

Description

Create a PruDent classifier to predict multi-label data. To this, two round of Binary Relevance is executed, such that, the first iteration generates new attributes to enrich the second prediction.

Usage

prudent(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  phi = 0,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

phi

A value between 0 and 1 to determine the information gain. The value 0 include all labels in the second phase and the 1 none.

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

In the second phase only labels whose information gain is greater than a specific phi value is added.

Value

An object of class PruDentmodel containing the set of fitted models, including:

labels

A vector with the label names.

phi

The value of phi parameter.

IG

The matrix of Information Gain used in combination with phi parameter to define the labels used in the second step.

basemodel

The BRModel used in the first iteration.

metamodels

A list of models named by the label names used in the second iteration.

References

Alali, A., & Kubat, M. (2015). PruDent: A Pruned and Confident Stacking Approach for Multi-Label Classification. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2480-2493.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), ps(), rakel(), rdbr(), rpc()

Examples

model <- prudent(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use different phi correlation with C5.0 classifier
model <- prudent(toyml, 'C5.0', 0.3)

# Set a specific parameter
model <- prudent(toyml, 'KNN', k=5)

Pruned Set for multi-label Classification

Description

Create a Pruned Set model for multilabel classification.

Usage

ps(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  p = 3,
  strategy = c("A", "B"),
  b = 2,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

p

Number of instances to prune. All labelsets that occurs p times or less in the training data is removed. (Default: 3)

strategy

The strategy (A or B) for processing infrequent labelsets. (Default: A).

b

The number used by the strategy for processing infrequent labelsets.

...

Others arguments passed to the base algorithm for all subproblems.

cores

Not used

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Details

Pruned Set (PS) is a multi-class transformation that remove the less common classes to predict multi-label data.

Value

An object of class PSmodel containing the set of fitted models, including:

labels

A vector with the label names.

model

A LP model contained only the most common labelsets.

References

Read, J., Pfahringer, B., & Holmes, G. (2008). Multi-label classification using ensembles of pruned sets. In Proceedings - IEEE International Conference on Data Mining, ICDM (pp. 995–1000).

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), rakel(), rdbr(), rpc()

Other Powerset: eps(), lp(), ppt(), rakel()

Examples

model <- ps(toyml, "RANDOM")
pred <- predict(model, toyml)


##Change default configurations
model <- ps(toyml, "RF", p=4, strategy="B", b=1)

Random k-labelsets for multilabel classification

Description

Create a RAkEL model for multilabel classification.

Usage

rakel(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  k = 3,
  m = 2 * mdata$measures$num.labels,
  overlapping = TRUE,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

k

The number of labels used in each labelset. (Default: 3)

m

The number of LP models. Used when overlapping is TRUE, otherwise it is ignored. (Default: 2 * length(labels))

overlapping

Logical value, that defines if the method must overlapping the labelsets. If FALSE the method uses disjoint labelsets. (Default: TRUE)

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is running in parallel. (Default: options("utiml.seed", NA))

Details

RAndom k labELsets is an ensemble of LP models where each classifier is trained with a small set of labels, called labelset. Two different strategies for constructing the labelsets are the disjoint and overlapping labelsets.

Value

An object of class RAkELmodel containing the set of fitted models, including:

labels

A vector with the label names.

labelsets

A list with the labelsets used to build the LP models.

model

A list of the generated models, named by the label names.

References

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2011). Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering, 23(7), 1079-1089.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rdbr(), rpc()

Other Powerset: eps(), lp(), ppt(), ps()

Examples

model <- rakel(toyml, "RANDOM")
pred <- predict(model, toyml)

## SVM using k = 4 and m = 100
model <- rakel(toyml, "SVM", k=4, m=100)

## Random Forest using disjoint labelsets
model <- rakel(toyml, "RF", overlapping=FALSE)

Rank Cut (RCut) threshold method

Description

The Rank Cut (RCut) method is an instance-wise strategy, which outputs the k labels with the highest scores for each instance at the deployment.

Usage

rcut_threshold(prediction, k, probability = FALSE)

## Default S3 method:
rcut_threshold(prediction, k, probability = FALSE)

## S3 method for class 'mlresult'
rcut_threshold(prediction, k, probability = FALSE)

Arguments

prediction

A matrix or mlresult.

k

The number of elements that will be positive.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Value

A mlresult object.

Methods (by class)

  • default: Rank Cut (RCut) threshold method for matrix

  • mlresult: Rank Cut (RCut) threshold method for mlresult

References

Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.

See Also

Other threshold: fixed_threshold(), lcard_threshold(), mcut_threshold(), pcut_threshold(), scut_threshold(), subset_correction()

Examples

prediction <- matrix(runif(16), ncol = 4)
rcut_threshold(prediction, 2)

Recursive Dependent Binary Relevance (RDBR) for multi-label Classification

Description

Create a RDBR classifier to predict multi-label data. This is a recursive approach that enables the binary classifiers to discover existing label dependency by themselves. The idea of RDBR is running DBR recursively until the results stabilization of the result.

Usage

rdbr(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  estimate.models = TRUE,
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

estimate.models

Logical value indicating whether is necessary build Binary Relevance classifier for estimate process. The default implementation use BR as estimators, however when other classifier is desirable then use the value FALSE to skip this process. (Default: TRUE).

...

Others arguments passed to the base algorithm for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

The train method is exactly the same of DBR the recursion is in the predict method.

Value

An object of class RDBRmodel containing the set of fitted models, including:

labels

A vector with the label names.

estimation

The BR model to estimate the values for the labels. Only when the estimate.models = TRUE.

models

A list of final models named by the label names.

References

Rauber, T. W., Mello, L. H., Rocha, V. F., Luchi, D., & Varejao, F. M. (2014). Recursive Dependent Binary Relevance Model for Multi-label Classification. In Advances in Artificial Intelligence - IBERAMIA, 206-217.

See Also

Dependent Binary Relevance (DBR)

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rpc()

Examples

model <- rdbr(toyml, "RANDOM")
pred <- predict(model, toyml)


# Use Random Forest as base algorithm and 2 cores
model <- rdbr(toyml, 'RF', cores = 2, seed = 123)

Remove attributes from the dataset

Description

Remove specified attributes generating a new multi-label dataset.

Usage

remove_attributes(mdata, attributes)

Arguments

mdata

The mldr dataset to remove labels.

attributes

Attributes indexes or attributes names to be removed.

Value

a new mldr object.

Note

If invalid attributes names or indexes were informed, they will be ignored.

See Also

Other pre process: fill_sparse_mldata(), normalize_mldata(), remove_labels(), remove_skewness_labels(), remove_unique_attributes(), remove_unlabeled_instances(), replace_nominal_attributes()

Examples

toyml1 <- remove_attributes(toyml, c("iatt8","iatt9", "ratt10"))
toyml2 <- remove_attributes(toyml, 10)

Remove labels from the dataset

Description

Remove specified labels generating a new multi-label dataset.

Usage

remove_labels(mdata, labels)

Arguments

mdata

The mldr dataset to remove labels.

labels

Label indexes or label names to be removed.

Value

a new mldr object.

Note

If invalid labels names or indexes were informed, they will be ignored.

See Also

Other pre process: fill_sparse_mldata(), normalize_mldata(), remove_attributes(), remove_skewness_labels(), remove_unique_attributes(), remove_unlabeled_instances(), replace_nominal_attributes()

Examples

toyml1 <- remove_labels(toyml, c("y1","y5"))
toyml2 <- remove_labels(toyml, c(11, 15))

Remove unusual or very common labels

Description

Remove the labels that have smaller number of positive or negative examples based on a specific threshold value.

Usage

remove_skewness_labels(mdata, t = 1)

Arguments

mdata

The mldr dataset to remove the skewness labels.

t

Threshold value. Number of minimum examples positive and negative.

Value

a new mldr object.

See Also

Other pre process: fill_sparse_mldata(), normalize_mldata(), remove_attributes(), remove_labels(), remove_unique_attributes(), remove_unlabeled_instances(), replace_nominal_attributes()

Examples

remove_skewness_labels(toyml, 20)

Remove unique attributes

Description

Remove the attributes that have a single value for all instances. Empty and NA values are considered different values.

Usage

remove_unique_attributes(mdata)

Arguments

mdata

The mldr dataset to remove.

Value

a new mldr object.

See Also

Other pre process: fill_sparse_mldata(), normalize_mldata(), remove_attributes(), remove_labels(), remove_skewness_labels(), remove_unlabeled_instances(), replace_nominal_attributes()

Examples

alt.toy <- toyml
alt.toy$dataset$ratt10 <- mean(alt.toy$dataset$ratt10)
new.toy <- remove_unique_attributes(alt.toy)

Remove examples without labels

Description

Remove the examples that do not have labels.

Usage

remove_unlabeled_instances(mdata)

Arguments

mdata

The mldr dataset to remove the instances.

Value

a new mldr object.

See Also

Other pre process: fill_sparse_mldata(), normalize_mldata(), remove_attributes(), remove_labels(), remove_skewness_labels(), remove_unique_attributes(), replace_nominal_attributes()

Examples

new.toy <- remove_labels(toyml, c(12,14))
remove_unlabeled_instances(new.toy)

Replace nominal attributes Replace the nominal attributes by binary attributes.

Description

Replace nominal attributes Replace the nominal attributes by binary attributes.

Usage

replace_nominal_attributes(mdata, ordinal.attributes = list())

Arguments

mdata

The mldr dataset to remove.

ordinal.attributes

Not yet, but it will be used to specify which attributes need to be replaced.

Value

a new mldr object.

See Also

Other pre process: fill_sparse_mldata(), normalize_mldata(), remove_attributes(), remove_labels(), remove_skewness_labels(), remove_unique_attributes(), remove_unlabeled_instances()

Examples

new.toy <- toyml
new.column <- as.factor(sample(c("a","b","c"), 100, replace = TRUE))
new.toy$dataset$ratt10 <- new.column
head(replace_nominal_attributes(new.toy))

Ranking by Pairwise Comparison (RPC) for multi-label Classification

Description

Create a RPC model for multilabel classification.

Usage

rpc(
  mdata,
  base.algorithm = getOption("utiml.base.algorithm", "SVM"),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

mdata

A mldr dataset used to train the binary models.

base.algorithm

A string with the name of the base algorithm. (Default: options("utiml.base.algorithm", "SVM"))

...

Others arguments passed to the base algorithm for all subproblems

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Details

RPC is a simple transformation method that uses pairwise classification to predict multi-label data. This is based on the one-versus-one approach to build a specific model for each label combination.

Value

An object of class RPCmodel containing the set of fitted models, including:

labels

A vector with the label names.

models

A list of the generated models, named by the label names.

References

Hullermeier, E., Furnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16-17), 1897-1916.

See Also

Other Transformation methods: brplus(), br(), cc(), clr(), dbr(), ebr(), ecc(), eps(), esl(), homer(), lift(), lp(), mbr(), ns(), ppt(), prudent(), ps(), rakel(), rdbr()

Other Pairwise methods: clr()

Examples

model <- rpc(toyml, "RANDOM")
pred <- predict(model, toyml)

SCut Score-based method

Description

This is a label-wise method that adjusts the threshold for each label to achieve a specific loss function using a validation set or cross validation.

Usage

scut_threshold(
  prediction,
  expected,
  loss.function = NA,
  cores = getOption("utiml.cores", 1)
)

## Default S3 method:
scut_threshold(
  prediction,
  expected,
  loss.function = NA,
  cores = getOption("utiml.cores", 1)
)

## S3 method for class 'mlresult'
scut_threshold(
  prediction,
  expected,
  loss.function = NA,
  cores = getOption("utiml.cores", 1)
)

Arguments

prediction

A matrix or mlresult.

expected

The expected labels for the prediction. May be a matrix with the label values or a mldr object.

loss.function

A loss function to be optimized. If you want to use your own error function see the notes and example. (Default: Mean Squared Error)

cores

The number of cores to parallelize the computation Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

Details

Different from the others threshold methods instead of return the bipartition results, it returns the threshold values for each label.

Value

A numeric vector with the threshold values for each label

Methods (by class)

  • default: Default scut_threshold

  • mlresult: Mlresult scut_threshold

Note

The loss function is a R method that receive two vectors, the expected values of the label and the predicted values, respectively. Positive values are represented by the 1 and the negative by the 0.

References

Fan, R.-E., & Lin, C.-J. (2007). A study on threshold selection for multi-label classification. Department of Computer Science, National Taiwan University.

Al-Otaibi, R., Flach, P., & Kull, M. (2014). Multi-label Classification: A Comparative Study on Threshold Selection Methods. In First International Workshop on Learning over Multiple Contexts (LMCE) at ECML-PKDD 2014.

See Also

Other threshold: fixed_threshold(), lcard_threshold(), mcut_threshold(), pcut_threshold(), rcut_threshold(), subset_correction()

Examples

names <- list(1:10, c("a", "b", "c"))
prediction <- matrix(runif(30), ncol = 3, dimnames = names)
classes <- matrix(sample(0:1, 30, rep = TRUE), ncol = 3, dimnames = names)
thresholds <- scut_threshold(prediction, classes)
fixed_threshold(prediction, thresholds)


# Penalizes only FP predictions
mylossfunc <- function (real, predicted) {
   mean(predicted - real * predicted)
}
prediction <- predict(br(toyml, "RANDOM"), toyml)
scut_threshold(prediction, toyml, loss.function = mylossfunc, cores = 2)

Subset Correction of a predicted result

Description

This method restrict a multi-label learner to predict only label combinations whose existence is present in the (training) data. To this all labelsets that are predicted but are not found on training data is replaced by the most similar labelset.

Usage

subset_correction(mlresult, train_y, probability = FALSE)

Arguments

mlresult

An object of mlresult that contain the scores and bipartition values.

train_y

A matrix/data.frame with all labels values of the training dataset or a mldr train dataset.

probability

A logical value. If TRUE the predicted values are the score between 0 and 1, otherwise the values are bipartition 0 or 1. (Default: FALSE)

Details

If the most similar is not unique, those label combinations with higher frequency in the training data are preferred. The Hamming loss distance is used to determine the difference between the labelsets.

Value

A new mlresult where all results are present in the training labelsets.

Note

The original paper describes a method to create only bipartitions result, but we adapted the method to change the scores. Based on the base.threshold value the scores higher than the threshold value, but must be lower are changed to respect this restriction. If NULL this correction will be ignored.

References

Senge, R., Coz, J. J. del, & Hullermeier, E. (2013). Rectifying classifier chains for multi-label classification. In Workshop of Lernen, Wissen & Adaptivitat (LWA 2013) (pp. 162-169). Bamberg, Germany.

See Also

Other threshold: fixed_threshold(), lcard_threshold(), mcut_threshold(), pcut_threshold(), rcut_threshold(), scut_threshold()

Examples

prediction <- predict(br(toyml, "RANDOM"), toyml)
subset_correction(prediction, toyml)

Summary method for mltransformation

Description

Summary method for mltransformation

Usage

## S3 method for class 'mltransformation'
summary(object, ...)

Arguments

object

A transformed dataset

...

additional arguments affecting the summary produced.

Value

No return value, called for print model's detail


Toy multi-label dataset.

Description

A toy multi-label dataset is a synthetic dataset generated by the tool http://sites.labic.icmc.usp.br/mldatagen/ using the Hyperspheres strategy. Its purpose is to be used for small tests and examples.

Usage

toyml

Format

A mldr object with 100 instances, 10 features and 5 labels:

att1

Relevant numeric attribute between (-1 and 1)

att2

Relevant numeric attribute between (-1 and 1)

att3

Relevant numeric attribute between (-1 and 1)

att4

Relevant numeric attribute between (-1 and 1)

att5

Relevant numeric attribute between (-1 and 1)

att6

Relevant numeric attribute between (-1 and 1)

att7

Relevant numeric attribute between (-1 and 1)

iatt8

Irrelevant numeric attribute between (-1 and 1)

iatt9

Irrelevant numeric attribute between (-1 and 1)

ratt10

Redundant numeric attribute between (-1 and 1)

y1

Label 'y1' - Frequency: 0.17

y2

Label 'y2' - Frequency: 0.78

y3

Label 'y3' - Frequency: 0.19

y4

Label 'y4' - Frequency: 0.69

y5

Label 'y5' - Frequency: 0.17

Details

General Information

  • Cardinality: 2

  • Density: 0.4

  • Distinct multi-labels: 18

  • Number of single labelsets: 5

  • Max frequency: 23

Source

Generated by http://sites.labic.icmc.usp.br/mldatagen/ Configuration:

  • Strategy: Hyperspheres

  • Relevant Features: 7

  • Irrelevant Features: 2

  • Redundant Features: 1

  • Number of Labels (q): 5

  • Number of Instances: 100

  • Noise (from 0 to 1): 0.05

  • Maximum Radius/Half-Edge of the Hyperspheres/Hypercubes: 0.8

  • Minimum Radius/Half-Edge of the Hyperspheres/Hypercubes: ((q/10)+1)/q


utiml: Utilities for Multi-Label Learning

Description

The utiml package is a framework for the application of classification algorithms to multi-label data. Like the well known MULAN used with Weka, it provides a set of multi-label procedures such as sampling methods, transformation strategies, threshold functions, pre-processing techniques and evaluation metrics. The package was designed to allow users to easily perform complete multi-label classification experiments in the R environment.

Details

Currently, the main methods supported are:

  1. Classification methods: ML Baselines, Binary Relevance (BR), BR+, Classifier Chains, Calibrated Label Ranking (CLR), Dependent Binary Relevance (DBR), Ensemble of Binary Relevance (EBR), Ensemble of Classifier Chains (ECC), Ensemble of Pruned Set (EPS), Hierarchy Of Multilabel classifiER (HOMER), Label specIfic FeaTures (LIFT), Label Powerset (LP), Meta-Binary Relevance (MBR or 2BR), Multi-label KNN (ML-KNN), Nested Stacking (NS), Pruned Problem Transformation (PPT), Pruned and Confident Stacking Approach (Prudent), Pruned Set (PS), Random k-labelsets (RAkEL), Recursive Dependent Binary Relevance (RDBR), Ranking by Pairwise Comparison (RPC)

  2. Evaluation methods: Performing a cross-validation procedure, Confusion Matrix, Evaluate, Supported measures

  3. Pre-process utilities: Fill sparse data, Normalize data, Remove attributes, Remove labels, Remove skewness labels, Remove unique attributes, Remove unlabeled instances, Replace nominal attributes

  4. Sampling methods: Create holdout partitions, Create k-fold partitions, Create random subset, Create subset, Partition fold

  5. Threshold methods: Fixed threshold, Cardinality threshold, MCUT, PCUT, RCUT, SCUT, Subset correction

However, there are other utilities methods not previously cited as as.bipartition, as.mlresult, as.ranking, multilabel_prediction, etc. More details and examples are available on utiml repository.

Notes

We use the mldr package, to manipulate multi-label data. See its documentation to more information about handle multi-label dataset.

Cite as

  @article{RJ-2018-041,
     author = {Adriano Rivolli and Andre C. P. L. F. de Carvalho},
     title = {{The utiml Package: Multi-label Classification in R}},
     year = {2018},
     journal = {{The R Journal}},
     doi = {10.32614/RJ-2018-041},
     url = {https://doi.org/10.32614/RJ-2018-041},
     pages = {24--37},
     volume = {10},
     number = {2}
 }

Author(s)

This package is a result of my PhD at Institute of Mathematics and Computer Sciences (ICMC) at the University of Sao Paulo, Brazil.

PhD advisor: Andre C. P. L. F. de Carvalho


Return the name of measures

Description

Return the name of measures

Usage

utiml_measure_names(measures = c("all"))

Arguments

measures

The group of measures (Default: "all").

Value

array of character contained the measures names.

Examples

utiml_measure_names()
utiml_measure_names("bipartition")
utiml_measure_names(c("micro-based", "macro-based"))