Package: utiml 0.1.7

utiml: Utilities for Multi-Label Learning

Multi-label learning strategies and others procedures to support multi- label classification in R. The package provides a set of multi-label procedures such as sampling methods, transformation strategies, threshold functions, pre-processing techniques and evaluation metrics. A complete overview of the matter can be seen in Zhang, M. and Zhou, Z. (2014) <doi:10.1109/TKDE.2013.39> and Gibaja, E. and Ventura, S. (2015) A Tutorial on Multi-label Learning.

Authors:Adriano Rivolli [aut, cre]

utiml_0.1.7.tar.gz
utiml_0.1.7.zip(r-4.5)utiml_0.1.7.zip(r-4.4)utiml_0.1.7.zip(r-4.3)
utiml_0.1.7.tgz(r-4.4-any)utiml_0.1.7.tgz(r-4.3-any)
utiml_0.1.7.tar.gz(r-4.5-noble)utiml_0.1.7.tar.gz(r-4.4-noble)
utiml_0.1.7.tgz(r-4.4-emscripten)utiml_0.1.7.tgz(r-4.3-emscripten)
utiml.pdf |utiml.html
utiml/json (API)
NEWS

# Install 'utiml' in R:
install.packages('utiml', repos = c('https://rivolli.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rivolli/utiml/issues

Datasets:
  • foodtruck - Foodtruck multi-label dataset.
  • toyml - Toy multi-label dataset.

On CRAN:

6.39 score 28 stars 87 scripts 230 downloads 2 mentions 59 exports 42 dependencies

Last updated 4 years agofrom:d499e5ff1c. Checks:3 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 15 2025
R-4.5-winNOTEJan 15 2025
R-4.5-linuxNOTEJan 15 2025
R-4.4-winNOTEJan 15 2025
R-4.4-macNOTEJan 15 2025
R-4.3-winOKJan 15 2025
R-4.3-macOKJan 15 2025

Exports:as.bipartitionas.mlresultas.probabilityas.rankingbaselinebrbrplusccclrcompute_multilabel_predictionscreate_holdout_partitioncreate_kfold_partitioncreate_random_subsetcreate_subsetcvdbrebreccepseslfill_sparse_mldatafixed_thresholdhomeris.bipartitionis.probabilitylcard_thresholdliftlpmbrmcut_thresholdmerge_mlconfmatmldatamlknnmlpredictmltrainmultilabel_confusion_matrixmultilabel_evaluatemultilabel_measuresmultilabel_predictionnormalize_mldatanspartition_foldpcut_thresholdpptprudentpsrakelrcut_thresholdrdbrremove_attributesremove_labelsremove_skewness_labelsremove_unique_attributesremove_unlabeled_instancesreplace_nominal_attributesrpcscut_thresholdsubset_correctionutiml_measure_names

Dependencies:base64encbitopsbslibcachemcaToolscirclizeclicolorspacecommonmarkcrayondigestfastmapfontawesomefsGlobalOptionsgluegplotsgtoolshtmltoolshttpuvjquerylibjsonliteKernSmoothlaterlifecyclemagrittrmemoisemimemldrpromisesR6rappdirsRcpprlangROCRsassshapeshinysourcetoolswithrXMLxtable

utiml: Utilities for multi-label learning

Rendered fromutiml-overview.Rmdusingknitr::rmarkdownon Jan 15 2025.

Last update: 2021-05-27
Started: 2016-04-06

Readme and manuals

Help Manual

Help pageTopics
Filter a Multi-Label Result[.mlresult
Join two multi-label confusion matrix+.mlconfmat
Convert a mlresult to a bipartition matrixas.bipartition
Convert a multi-label Confusion Matrix to matrixas.matrix.mlconfmat
Convert a mlresult to matrixas.matrix.mlresult
Convert a matrix prediction in a multi label predictionas.mlresult as.mlresult.default as.mlresult.mlresult
Convert a mlresult to a probability matrixas.probability
Convert a mlresult to a ranking matrixas.ranking
Baseline reference for multilabel classificationbaseline
Binary Relevance for multi-label Classificationbr
BR+ or BRplus for multi-label Classificationbrplus
Classifier Chains for multi-label Classificationcc
Calibrated Label Ranking (CLR) for multi-label Classificationclr
Compute the multi-label ensemble predictions based on some vote schemacompute_multilabel_predictions
Create a holdout partition based on the specified algorithmcreate_holdout_partition
Create the k-folds partition based on the specified algorithmcreate_kfold_partition
Create a random subset of a datasetcreate_random_subset
Create a subset of a datasetcreate_subset
Multi-label cross-validationcv
Dependent Binary Relevance (DBR) for multi-label Classificationdbr
Ensemble of Binary Relevance for multi-label Classificationebr
Ensemble of Classifier Chains for multi-label Classificationecc
Ensemble of Pruned Set for multi-label Classificationeps
Ensemble of Single Labelesl
Fill sparse dataset with 0 or '' valuesfill_sparse_mldata
Apply a fixed threshold in the resultsfixed_threshold fixed_threshold.default fixed_threshold.mlresult
Foodtruck multi-label dataset.foodtruck
Hierarchy Of Multilabel classifiER (HOMER)homer
Test if a mlresult contains crisp values as defaultis.bipartition
Test if a mlresult contains score values as defaultis.probability
Threshold based on cardinalitylcard_threshold lcard_threshold.default lcard_threshold.mlresult
LIFT for multi-label Classificationlift
Label Powerset for multi-label Classificationlp
Meta-BR or 2BR for multi-label Classificationmbr
Maximum Cut Thresholding (MCut)mcut_threshold mcut_threshold.default mcut_threshold.mlresult
Join a list of multi-label confusion matrixmerge_mlconfmat
Fix the mldr dataset to use factorsmldata
Multi-label KNN (ML-KNN) for multi-label Classificationmlknn
Prediction transformation problemsmlpredict
Build transformation modelsmltrain
Compute the confusion matrix for a multi-label predictionmultilabel_confusion_matrix
Evaluate multi-label predictionsmultilabel_evaluate multilabel_evaluate.mlconfmat multilabel_evaluate.mldr
Return the name of all measuresmultilabel_measures
Create a mlresult objectmultilabel_prediction
Normalize numerical attributesnormalize_mldata
Nested Stacking for multi-label Classificationns
Create the multi-label dataset from foldspartition_fold
Proportional Thresholding (PCut)pcut_threshold pcut_threshold.default pcut_threshold.mlresult
Pruned Problem Transformation for multi-label Classificationppt
Predict Method for BASELINEpredict.BASELINEmodel
Predict Method for Binary Relevancepredict.BRmodel
Predict Method for BR+ (brplus)predict.BRPmodel
Predict Method for Classifier Chainspredict.CCmodel
Predict Method for CLRpredict.CLRmodel
Predict Method for DBRpredict.DBRmodel
Predict Method for Ensemble of Binary Relevancepredict.EBRmodel
Predict Method for Ensemble of Classifier Chainspredict.ECCmodel
Predict Method for Ensemble of Pruned Set Transformationpredict.EPSmodel
Predict Method for Ensemble of Single Labelpredict.ESLmodel
Predict Method for HOMERpredict.HOMERmodel
Predict Method for LIFTpredict.LIFTmodel
Predict Method for Label Powersetpredict.LPmodel
Predict Method for Meta-BR/2BRpredict.MBRmodel
Predict Method for ML-KNNpredict.MLKNNmodel
Predict Method for Nested Stackingpredict.NSmodel
Predict Method for Pruned Problem Transformationpredict.PPTmodel
Predict Method for PruDentpredict.PruDentmodel
Predict Method for Pruned Set Transformationpredict.PSmodel
Predict Method for RAkELpredict.RAkELmodel
Predict Method for RDBRpredict.RDBRmodel
Predict Method for RPCpredict.RPCmodel
Print BR modelprint.BRmodel
Print BRP modelprint.BRPmodel
Print CC modelprint.CCmodel
Print CLR modelprint.CLRmodel
Print DBR modelprint.DBRmodel
Print EBR modelprint.EBRmodel
Print ECC modelprint.ECCmodel
Print EPS modelprint.EPSmodel
Print ESL modelprint.ESLmodel
Print a kFoldPartition objectprint.kFoldPartition
Print LIFT modelprint.LIFTmodel
Print LP modelprint.LPmodel
Print Majority modelprint.majorityModel
Print MBR modelprint.MBRmodel
Print a Multi-label Confusion Matrixprint.mlconfmat
Print MLKNN modelprint.MLKNNmodel
Print the mlresultprint.mlresult
Print NS modelprint.NSmodel
Print PPT modelprint.PPTmodel
Print PruDent modelprint.PruDentmodel
Print PS modelprint.PSmodel
Print RAkEL modelprint.RAkELmodel
Print Random modelprint.randomModel
Print RDBR modelprint.RDBRmodel
Print RPC modelprint.RPCmodel
PruDent classifier for multi-label Classificationprudent
Pruned Set for multi-label Classificationps
Random k-labelsets for multilabel classificationrakel
Rank Cut (RCut) threshold methodrcut_threshold rcut_threshold.default rcut_threshold.mlresult
Recursive Dependent Binary Relevance (RDBR) for multi-label Classificationrdbr
Remove attributes from the datasetremove_attributes
Remove labels from the datasetremove_labels
Remove unusual or very common labelsremove_skewness_labels
Remove unique attributesremove_unique_attributes
Remove examples without labelsremove_unlabeled_instances
Replace nominal attributes Replace the nominal attributes by binary attributes.replace_nominal_attributes
Ranking by Pairwise Comparison (RPC) for multi-label Classificationrpc
SCut Score-based methodscut_threshold scut_threshold.default scut_threshold.mlresult
Subset Correction of a predicted resultsubset_correction
Summary method for mltransformationsummary.mltransformation
Toy multi-label dataset.toyml
utiml: Utilities for Multi-Label Learningutiml
Return the name of measuresutiml_measure_names