Filter a Multi-Label Result | [.mlresult |
Join two multi-label confusion matrix | +.mlconfmat |
Convert a mlresult to a bipartition matrix | as.bipartition |
Convert a multi-label Confusion Matrix to matrix | as.matrix.mlconfmat |
Convert a mlresult to matrix | as.matrix.mlresult |
Convert a matrix prediction in a multi label prediction | as.mlresult as.mlresult.default as.mlresult.mlresult |
Convert a mlresult to a probability matrix | as.probability |
Convert a mlresult to a ranking matrix | as.ranking |
Baseline reference for multilabel classification | baseline |
Binary Relevance for multi-label Classification | br |
BR+ or BRplus for multi-label Classification | brplus |
Classifier Chains for multi-label Classification | cc |
Calibrated Label Ranking (CLR) for multi-label Classification | clr |
Compute the multi-label ensemble predictions based on some vote schema | compute_multilabel_predictions |
Create a holdout partition based on the specified algorithm | create_holdout_partition |
Create the k-folds partition based on the specified algorithm | create_kfold_partition |
Create a random subset of a dataset | create_random_subset |
Create a subset of a dataset | create_subset |
Multi-label cross-validation | cv |
Dependent Binary Relevance (DBR) for multi-label Classification | dbr |
Ensemble of Binary Relevance for multi-label Classification | ebr |
Ensemble of Classifier Chains for multi-label Classification | ecc |
Ensemble of Pruned Set for multi-label Classification | eps |
Ensemble of Single Label | esl |
Fill sparse dataset with 0 or '' values | fill_sparse_mldata |
Apply a fixed threshold in the results | fixed_threshold fixed_threshold.default fixed_threshold.mlresult |
Foodtruck multi-label dataset. | foodtruck |
Hierarchy Of Multilabel classifiER (HOMER) | homer |
Test if a mlresult contains crisp values as default | is.bipartition |
Test if a mlresult contains score values as default | is.probability |
Threshold based on cardinality | lcard_threshold lcard_threshold.default lcard_threshold.mlresult |
LIFT for multi-label Classification | lift |
Label Powerset for multi-label Classification | lp |
Meta-BR or 2BR for multi-label Classification | mbr |
Maximum Cut Thresholding (MCut) | mcut_threshold mcut_threshold.default mcut_threshold.mlresult |
Join a list of multi-label confusion matrix | merge_mlconfmat |
Fix the mldr dataset to use factors | mldata |
Multi-label KNN (ML-KNN) for multi-label Classification | mlknn |
Prediction transformation problems | mlpredict |
Build transformation models | mltrain |
Compute the confusion matrix for a multi-label prediction | multilabel_confusion_matrix |
Evaluate multi-label predictions | multilabel_evaluate multilabel_evaluate.mlconfmat multilabel_evaluate.mldr |
Return the name of all measures | multilabel_measures |
Create a mlresult object | multilabel_prediction |
Normalize numerical attributes | normalize_mldata |
Nested Stacking for multi-label Classification | ns |
Create the multi-label dataset from folds | partition_fold |
Proportional Thresholding (PCut) | pcut_threshold pcut_threshold.default pcut_threshold.mlresult |
Pruned Problem Transformation for multi-label Classification | ppt |
Predict Method for BASELINE | predict.BASELINEmodel |
Predict Method for Binary Relevance | predict.BRmodel |
Predict Method for BR+ (brplus) | predict.BRPmodel |
Predict Method for Classifier Chains | predict.CCmodel |
Predict Method for CLR | predict.CLRmodel |
Predict Method for DBR | predict.DBRmodel |
Predict Method for Ensemble of Binary Relevance | predict.EBRmodel |
Predict Method for Ensemble of Classifier Chains | predict.ECCmodel |
Predict Method for Ensemble of Pruned Set Transformation | predict.EPSmodel |
Predict Method for Ensemble of Single Label | predict.ESLmodel |
Predict Method for HOMER | predict.HOMERmodel |
Predict Method for LIFT | predict.LIFTmodel |
Predict Method for Label Powerset | predict.LPmodel |
Predict Method for Meta-BR/2BR | predict.MBRmodel |
Predict Method for ML-KNN | predict.MLKNNmodel |
Predict Method for Nested Stacking | predict.NSmodel |
Predict Method for Pruned Problem Transformation | predict.PPTmodel |
Predict Method for PruDent | predict.PruDentmodel |
Predict Method for Pruned Set Transformation | predict.PSmodel |
Predict Method for RAkEL | predict.RAkELmodel |
Predict Method for RDBR | predict.RDBRmodel |
Predict Method for RPC | predict.RPCmodel |
Print BR model | print.BRmodel |
Print BRP model | print.BRPmodel |
Print CC model | print.CCmodel |
Print CLR model | print.CLRmodel |
Print DBR model | print.DBRmodel |
Print EBR model | print.EBRmodel |
Print ECC model | print.ECCmodel |
Print EPS model | print.EPSmodel |
Print ESL model | print.ESLmodel |
Print a kFoldPartition object | print.kFoldPartition |
Print LIFT model | print.LIFTmodel |
Print LP model | print.LPmodel |
Print Majority model | print.majorityModel |
Print MBR model | print.MBRmodel |
Print a Multi-label Confusion Matrix | print.mlconfmat |
Print MLKNN model | print.MLKNNmodel |
Print the mlresult | print.mlresult |
Print NS model | print.NSmodel |
Print PPT model | print.PPTmodel |
Print PruDent model | print.PruDentmodel |
Print PS model | print.PSmodel |
Print RAkEL model | print.RAkELmodel |
Print Random model | print.randomModel |
Print RDBR model | print.RDBRmodel |
Print RPC model | print.RPCmodel |
PruDent classifier for multi-label Classification | prudent |
Pruned Set for multi-label Classification | ps |
Random k-labelsets for multilabel classification | rakel |
Rank Cut (RCut) threshold method | rcut_threshold rcut_threshold.default rcut_threshold.mlresult |
Recursive Dependent Binary Relevance (RDBR) for multi-label Classification | rdbr |
Remove attributes from the dataset | remove_attributes |
Remove labels from the dataset | remove_labels |
Remove unusual or very common labels | remove_skewness_labels |
Remove unique attributes | remove_unique_attributes |
Remove examples without labels | remove_unlabeled_instances |
Replace nominal attributes Replace the nominal attributes by binary attributes. | replace_nominal_attributes |
Ranking by Pairwise Comparison (RPC) for multi-label Classification | rpc |
SCut Score-based method | scut_threshold scut_threshold.default scut_threshold.mlresult |
Subset Correction of a predicted result | subset_correction |
Summary method for mltransformation | summary.mltransformation |
Toy multi-label dataset. | toyml |
utiml: Utilities for Multi-Label Learning | utiml |
Return the name of measures | utiml_measure_names |